Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor

IF 1.5 Q3 ENGINEERING, CHEMICAL Journal of Combustion Pub Date : 2016-09-15 DOI:10.1155/2016/2572035
A. Benim, S. Iqbal, F. Joos, A. Wiedermann
{"title":"Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor","authors":"A. Benim, S. Iqbal, F. Joos, A. Wiedermann","doi":"10.1155/2016/2572035","DOIUrl":null,"url":null,"abstract":"Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/2572035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10

Abstract

Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型旋流燃气轮机燃烧室湍流燃烧的数值分析
对通用旋流燃气轮机燃烧室内的湍流反应流动进行了数值研究。湍流的模拟采用URANS公式结合海温湍流模式,作为基本的模拟方法。为了进行比较,我们还将URANS与RSM湍流模型结合应用于其中一个案例。在这种情况下,LES也用于湍流建模。为了模拟湍流-化学相互作用,采用了基于混合分数和反应过程变量的层流小火焰模型。该模型在开源CFD代码OpenFOAM中实现,该代码已被用作本研究的基础。为了验证目的,将预测结果与具有外部烟气再循环的天然气火焰的测量结果进行了比较。与实验数据吻合较好。随后,将数值研究扩展到合成气,比较了合成气与天然气的燃烧行为。这里,对没有外部烟气再循环的情况进行了分析。计算模型能较好地预测实验数据,并能预测合成气倒叙倾向的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
期刊最新文献
Design, Modeling, and Feasibility Analysis of Rotary Valve for Internal Combustion Engine Comparative Analysis of Swirl Burner and Cross Jet Burner in Terms of Efficiency and Environmental Performance Uranium Dust Cloud Combustion: Burning Characteristics and Absorption Spectroscopy Measurements An Overview of Energy Recovery from Local Slaughterhouse-Based Gallus gallus domesticus Greasy Residues and Latest Applications Effectiveness of Charcoal Adsorbent in Flue Gas Filters for PCB Reduction in Smoke from Hospital Incinerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1