Teren Liu, Tao Fang, K. Kavanagh, Hongyu Yu, G. Xia
{"title":"A new wet etching method for black phosphorus layer number engineering: experiment, modeling and DFT simulations","authors":"Teren Liu, Tao Fang, K. Kavanagh, Hongyu Yu, G. Xia","doi":"10.1109/SISPAD.2019.8870363","DOIUrl":null,"url":null,"abstract":"This paper reports the successful atomic layer patterning of 2-dimensional Black Phosphorus (BP) and the simulation of the etching process by Density Functional Theory (DFT) method. The wet etching process can etch selected regions of few-layer black phosphorous with an atomic layer accuracy, which provides a feasible patterning approach for large-scale manufacturing of few-layer BP materials and devices. Absorption energies of iodine atoms/molecules at different location of BP layer edge were also calculated by DFT method, shown a vertical etching direction preference which was important for achieving high quality patterns.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"43 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports the successful atomic layer patterning of 2-dimensional Black Phosphorus (BP) and the simulation of the etching process by Density Functional Theory (DFT) method. The wet etching process can etch selected regions of few-layer black phosphorous with an atomic layer accuracy, which provides a feasible patterning approach for large-scale manufacturing of few-layer BP materials and devices. Absorption energies of iodine atoms/molecules at different location of BP layer edge were also calculated by DFT method, shown a vertical etching direction preference which was important for achieving high quality patterns.