{"title":"Highly selective room temperature operated ammonia sensor synthesized using electrospun yttrium doped SnO2 nanofibers","authors":"Utkarsh Nirbhay, Ajay Beniwal, S. Lalwani, Sunny","doi":"10.1109/NANO51122.2021.9514344","DOIUrl":null,"url":null,"abstract":"Yttrium (Y) doped SnO2 nanofibers were successfully synthesized and used for detecting low ammonia concentrations at room temperature (RT). Electrospinning followed by calcination method was used to synthesize the Y doped SnO2 nanofibers for various Y concentrations, among which $5 wt$.% Y doped SnO2 nanofibers (average diameter ~90 nm) demonstrated the best response. To analyze the selectivity of the sensor, the sensing properties were also studied for other analytes like acetone, methanol and ethanol, along with ammonia. The% response was observed to be 237%under 10 ppm of ammonia, which is found to be 2.7, 5.3 and 6.6 times higher as compared to acetone (87.5%), ethanol (44.4%) and methanol (36%) responses at 10 ppm, respectively, defining the excellent selectivity of the sensor towards ammonia detection. The fabricated sensor manifests fast response and recovery times i.e. less than a minute. The structural and morphological characteristics of Y doped SnO2 nanofibers were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"12 1","pages":"151-154"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Yttrium (Y) doped SnO2 nanofibers were successfully synthesized and used for detecting low ammonia concentrations at room temperature (RT). Electrospinning followed by calcination method was used to synthesize the Y doped SnO2 nanofibers for various Y concentrations, among which $5 wt$.% Y doped SnO2 nanofibers (average diameter ~90 nm) demonstrated the best response. To analyze the selectivity of the sensor, the sensing properties were also studied for other analytes like acetone, methanol and ethanol, along with ammonia. The% response was observed to be 237%under 10 ppm of ammonia, which is found to be 2.7, 5.3 and 6.6 times higher as compared to acetone (87.5%), ethanol (44.4%) and methanol (36%) responses at 10 ppm, respectively, defining the excellent selectivity of the sensor towards ammonia detection. The fabricated sensor manifests fast response and recovery times i.e. less than a minute. The structural and morphological characteristics of Y doped SnO2 nanofibers were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively.