Data Augmentation for Object Detection: A Review

Parvinder Kaur, B. Khehra, Bhupinder Singh Mavi
{"title":"Data Augmentation for Object Detection: A Review","authors":"Parvinder Kaur, B. Khehra, Bhupinder Singh Mavi","doi":"10.1109/MWSCAS47672.2021.9531849","DOIUrl":null,"url":null,"abstract":"Deep learning has been a game changer in the field of object detection in the last decade. But all the deep learning models for computer vision depend upon large amount of data for consistent results. For real life problems especially for medical imaging, availability of enough amounts of data is not always possible. Data augmentation is a collection of techniques that can be used to extend the dataset size and improve the quality of images in the dataset by a required amount. Logically it is used to make the deep learning model independent of the counterfeit features of the data space. In this paper a comprehensive review of data augmentation techniques for object detection is done. Problem of class imbalance is also outlined with possible solutions. In addition to train time augmentation techniques an overview of test time augmentations is also presented.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"30 1","pages":"537-543"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Deep learning has been a game changer in the field of object detection in the last decade. But all the deep learning models for computer vision depend upon large amount of data for consistent results. For real life problems especially for medical imaging, availability of enough amounts of data is not always possible. Data augmentation is a collection of techniques that can be used to extend the dataset size and improve the quality of images in the dataset by a required amount. Logically it is used to make the deep learning model independent of the counterfeit features of the data space. In this paper a comprehensive review of data augmentation techniques for object detection is done. Problem of class imbalance is also outlined with possible solutions. In addition to train time augmentation techniques an overview of test time augmentations is also presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目标检测中的数据增强:综述
在过去十年中,深度学习已经改变了目标检测领域的游戏规则。但是所有计算机视觉的深度学习模型都依赖于大量的数据来获得一致的结果。对于现实生活中的问题,尤其是医学成像问题,获得足够数量的数据并不总是可能的。数据增强是一组技术,可用于扩展数据集大小,并在一定程度上提高数据集中图像的质量。逻辑上,它被用来使深度学习模型独立于数据空间的虚假特征。本文对用于目标检测的数据增强技术进行了综述。本文还概述了阶级失衡的问题,并提出了可能的解决办法。除了训练时间增强技术外,还概述了测试时间增强技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1