Hybrid Data-Driven Closure Strategies for Reduced Order Modeling

Anna Ivagnes, G. Stabile, A. Mola, T. Iliescu, G. Rozza
{"title":"Hybrid Data-Driven Closure Strategies for Reduced Order Modeling","authors":"Anna Ivagnes, G. Stabile, A. Mola, T. Iliescu, G. Rozza","doi":"10.48550/arXiv.2207.10531","DOIUrl":null,"url":null,"abstract":"In this paper, we propose hybrid data-driven ROM closures for fluid flows. These new ROM closures combine two fundamentally different strategies: (i) purely data-driven ROM closures, both for the velocity and the pressure; and (ii) physically based, eddy viscosity data-driven closures, which model the energy transfer in the system. The first strategy consists in the addition of closure/correction terms to the governing equations, which are built from the available data. The second strategy includes turbulence modeling by adding eddy viscosity terms, which are determined by using machine learning techniques. The two strategies are combined for the first time in this paper to investigate a two-dimensional flow past a circular cylinder at Re=50000. Our numerical results show that the hybrid data-driven ROM is more accurate than both the purely data-driven ROM and the eddy viscosity ROM.","PeriodicalId":7991,"journal":{"name":"Appl. Math. Comput.","volume":"6 1","pages":"127920"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Appl. Math. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.10531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose hybrid data-driven ROM closures for fluid flows. These new ROM closures combine two fundamentally different strategies: (i) purely data-driven ROM closures, both for the velocity and the pressure; and (ii) physically based, eddy viscosity data-driven closures, which model the energy transfer in the system. The first strategy consists in the addition of closure/correction terms to the governing equations, which are built from the available data. The second strategy includes turbulence modeling by adding eddy viscosity terms, which are determined by using machine learning techniques. The two strategies are combined for the first time in this paper to investigate a two-dimensional flow past a circular cylinder at Re=50000. Our numerical results show that the hybrid data-driven ROM is more accurate than both the purely data-driven ROM and the eddy viscosity ROM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于降阶建模的混合数据驱动闭包策略
在本文中,我们提出了混合数据驱动的ROM闭包流体流动。这些新的ROM闭包结合了两种根本不同的策略:(i)纯数据驱动的ROM闭包,无论是速度还是压力;(ii)基于物理的涡流粘度数据驱动的闭包,它模拟了系统中的能量传递。第一种策略是在根据可用数据建立的控制方程中添加关闭/修正项。第二种策略包括通过添加涡流粘度项进行湍流建模,这是通过使用机器学习技术确定的。本文首次将这两种策略结合起来,研究了Re=50000时通过圆柱体的二维流动。数值结果表明,混合数据驱动ROM比纯数据驱动ROM和涡流黏度ROM精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal approximation of spherical squares by tensor product quadratic Bézier patches Investigation of chaotic resonance in Type-I and Type-II Morris-Lecar neurons Rayleigh-type wave propagation in exponentially graded initially stressed composite structure resting on rigid and yielding foundations Numerical solutions of the Allen-Cahn equation with the p-Laplacian Quantitative analysis of incipient fault detectability for time-varying stochastic systems based on weighted moving average approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1