H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, A. Yakovlev
{"title":"What is the cost of delay insensitivity?","authors":"H. Saito, A. Kondratyev, J. Cortadella, L. Lavagno, A. Yakovlev","doi":"10.1109/ICCAD.1999.810668","DOIUrl":null,"url":null,"abstract":"Deep submicron technology calls for new design techniques, in which wire and gate delays are accounted to have equal or nearly equal effect on circuit behaviour. Asynchronous speed-independent (SI) circuits, whose behaviour is only robust to gate delay variations, may be too optimistic. On the other hand, building circuits totally delay-insensitive (DI), for both gates and wires, is impractical. The paper presents an approach for automated synthesis of globally DI and locally SI circuits. It is based on order relaxation, a simple graphical transformation of a circuit's behavioural specification, for which the Signal Transition Graph, an interpreted Petri net, is used. The method is successfully tested on a set of benchmarks and a realistic design example. It proves effective showing average cost of DI interfacing at about 40% for area and 20% for speed.","PeriodicalId":6414,"journal":{"name":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","volume":"23 1","pages":"316-323"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1999.810668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Deep submicron technology calls for new design techniques, in which wire and gate delays are accounted to have equal or nearly equal effect on circuit behaviour. Asynchronous speed-independent (SI) circuits, whose behaviour is only robust to gate delay variations, may be too optimistic. On the other hand, building circuits totally delay-insensitive (DI), for both gates and wires, is impractical. The paper presents an approach for automated synthesis of globally DI and locally SI circuits. It is based on order relaxation, a simple graphical transformation of a circuit's behavioural specification, for which the Signal Transition Graph, an interpreted Petri net, is used. The method is successfully tested on a set of benchmarks and a realistic design example. It proves effective showing average cost of DI interfacing at about 40% for area and 20% for speed.