Prediction of the Stock Price of Shanghai Securities Composite Index by Using Time-series Model

Yun‐Min Huang
{"title":"Prediction of the Stock Price of Shanghai Securities Composite Index by Using Time-series Model","authors":"Yun‐Min Huang","doi":"10.1145/3537693.3537729","DOIUrl":null,"url":null,"abstract":"Investors collect information from the trading market and make investment decisions based on the collected information, i.e. belief in the future trend of securities prices. Therefore, some time series models are analyzed and methodology came into being and gradually developed. However, accurate trend prediction has long been a difficult problem. To improve the prediction accuracy, we must take advantage of the mathematical model (Time series model) to predict the stock price. When it comes to the time series model, ARIMA is impossible to be ignored. This paper has used the time series model including ARMA and ARIMA for predicting the stock price and it also includes parameter assignment about p、q、d for evaluating AIC and BIC by using ADF test、ACF、PACF. In addition, models are evaluated through experiments on real data sets composed of the true value of the Shanghai Securities Composite Index and fitting value of Shanghai Securities Composite Index and the table shows that the model we establish can minimize the error to a large degree. Therefore, the prediction result is in precision.","PeriodicalId":71902,"journal":{"name":"电子政务","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电子政务","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1145/3537693.3537729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Investors collect information from the trading market and make investment decisions based on the collected information, i.e. belief in the future trend of securities prices. Therefore, some time series models are analyzed and methodology came into being and gradually developed. However, accurate trend prediction has long been a difficult problem. To improve the prediction accuracy, we must take advantage of the mathematical model (Time series model) to predict the stock price. When it comes to the time series model, ARIMA is impossible to be ignored. This paper has used the time series model including ARMA and ARIMA for predicting the stock price and it also includes parameter assignment about p、q、d for evaluating AIC and BIC by using ADF test、ACF、PACF. In addition, models are evaluated through experiments on real data sets composed of the true value of the Shanghai Securities Composite Index and fitting value of Shanghai Securities Composite Index and the table shows that the model we establish can minimize the error to a large degree. Therefore, the prediction result is in precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用时间序列模型预测上证综合指数股价
投资者从交易市场中收集信息,并根据收集到的信息做出投资决策,即对证券价格未来趋势的信念。因此,对一些时间序列模型进行了分析,方法应运而生并逐渐发展起来。然而,准确的趋势预测一直是一个难题。为了提高预测精度,必须利用数学模型(时间序列模型)对股票价格进行预测。在时间序列模型中,ARIMA是不容忽视的。本文采用包括ARMA和ARIMA在内的时间序列模型来预测股票价格,并通过ADF检验、ACF、PACF对p、q、d进行参数赋值来评价AIC和BIC。此外,通过对上证综合指数真实值和上证综合指数拟合值组成的真实数据集进行实验,对模型进行了评价,从表中可以看出,我们建立的模型可以在很大程度上减小误差。因此,预测结果精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
4246
期刊介绍:
期刊最新文献
What services do experienced online grocery shoppers appreciate moving forward? Identification of Customers Satisfaction with Popular Online Shopping Apps in Saudi Arabia Using Sentiment Analysis and Topic modelling Covid 19’s Impact on Stocks'Relative Risks Analyzing the Language Functions of Food Advertising Contents in Instagram Reels and TikTok Videos Impact of Marketing Orientation, Learning Orientation and Entrepreneurial Orientation on Business Performance of Culinary SME in Jakarta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1