TCAD Augmented Machine Learning for Semiconductor Device Failure Troubleshooting and Reverse Engineering

Y. S. Bankapalli, H. Wong
{"title":"TCAD Augmented Machine Learning for Semiconductor Device Failure Troubleshooting and Reverse Engineering","authors":"Y. S. Bankapalli, H. Wong","doi":"10.1109/SISPAD.2019.8870467","DOIUrl":null,"url":null,"abstract":"In this paper, we show the possibility of using Technology Computer Aided Design (TCAD) to assist machine learning for semiconductor device failure trouble shooting and device reverse engineering. When TCAD simulation models and parameters are properly chosen and calibrated, large number of devices with random defects and structural characteristics can be generated and simulated. The results can then be used to train machine learning algorithms to predict the defect and structural characteristics of a device with given electrical characteristics (such as IV’s and CV’s). 1D PIN diode with various layer thicknesses and doping concentrations are used in this study. It is showed that with less than 2000 training samples, by using simple linear regression, one can achieve good prediction of layer thickness and doping of a given IV curve.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"73 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper, we show the possibility of using Technology Computer Aided Design (TCAD) to assist machine learning for semiconductor device failure trouble shooting and device reverse engineering. When TCAD simulation models and parameters are properly chosen and calibrated, large number of devices with random defects and structural characteristics can be generated and simulated. The results can then be used to train machine learning algorithms to predict the defect and structural characteristics of a device with given electrical characteristics (such as IV’s and CV’s). 1D PIN diode with various layer thicknesses and doping concentrations are used in this study. It is showed that with less than 2000 training samples, by using simple linear regression, one can achieve good prediction of layer thickness and doping of a given IV curve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TCAD增强机器学习在半导体器件故障排除和逆向工程中的应用
在本文中,我们展示了使用技术计算机辅助设计(TCAD)来协助半导体器件故障故障排除和器件逆向工程的机器学习的可能性。通过正确选择和标定TCAD仿真模型和参数,可以生成和模拟大量具有随机缺陷和结构特征的器件。然后,结果可用于训练机器学习算法,以预测具有给定电特性(如IV和CV)的设备的缺陷和结构特征。本研究采用了不同层厚和掺杂浓度的一维PIN二极管。结果表明,在小于2000个训练样本的情况下,通过简单的线性回归,可以很好地预测给定IV曲线的层厚和掺杂情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires Effect of Trap on Carrier Transport in InAs FET with Al2 O3 Oxide: DFT-based NEGF simulations Defect creation and Diffusion under electric fields from first-principles: the prototypical case of silicon dioxide Quantum Transport Simulations of the Zero Temperature Coefficient in Gate-all-around Nanowire pFETs Electronic and structural properties of interstitial titanium in crystalline silicon from first-principles simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1