Investigation on the Interface Thermal Resistance of Copper-Titanium

Yixin Xu, F. Zhu, Miaocao Wang, Zilin Lu, Jianxiong Hu, Pengjun Zeng
{"title":"Investigation on the Interface Thermal Resistance of Copper-Titanium","authors":"Yixin Xu, F. Zhu, Miaocao Wang, Zilin Lu, Jianxiong Hu, Pengjun Zeng","doi":"10.1109/ICEPT47577.2019.245729","DOIUrl":null,"url":null,"abstract":"The heat interface thermal resistance between the dielectric layer (Cu) and the barrier layer (Ti) in the Through-silicon via (TSV) are studied with molecular dynamics (MD) methods. The Cu/Ti interface thermal resistance is temperature dependent. Within the temperature from 293 K to 693 K, the resistance increases as the temperature rises. The increase in temperature causes an increase in atomic vacancy defects at the interface, and the interfacial voids degrade the heat transfer performance. However, when the temperature is higher than 693 K, the vacancies transfer from the interface to the second nearest or further neighbor on the adjacent atomic layers, which reduces the lattice mismatches at high temperatures. Besides, the single Ti atoms cross through the interface to match the Cu lattice vacancy when the temperature is higher than 693 K. As a result, interface thermal resistance decreases as temperature rises from 693 K to 1093 K.","PeriodicalId":6676,"journal":{"name":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","volume":"47 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT47577.2019.245729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heat interface thermal resistance between the dielectric layer (Cu) and the barrier layer (Ti) in the Through-silicon via (TSV) are studied with molecular dynamics (MD) methods. The Cu/Ti interface thermal resistance is temperature dependent. Within the temperature from 293 K to 693 K, the resistance increases as the temperature rises. The increase in temperature causes an increase in atomic vacancy defects at the interface, and the interfacial voids degrade the heat transfer performance. However, when the temperature is higher than 693 K, the vacancies transfer from the interface to the second nearest or further neighbor on the adjacent atomic layers, which reduces the lattice mismatches at high temperatures. Besides, the single Ti atoms cross through the interface to match the Cu lattice vacancy when the temperature is higher than 693 K. As a result, interface thermal resistance decreases as temperature rises from 693 K to 1093 K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜-钛界面热阻研究
用分子动力学方法研究了通硅孔(TSV)中介电层(Cu)和势垒层(Ti)之间的热界面热阻。Cu/Ti界面热阻与温度有关。在293 ~ 693 K温度范围内,电阻随温度升高而增大。温度升高导致界面原子空位缺陷增多,界面空位降低了传热性能。然而,当温度高于693 K时,空位从界面转移到相邻原子层上的第二近邻或更远的相邻原子层上,从而减少了高温下的晶格错配。此外,当温度高于693 K时,单个Ti原子穿过界面以匹配Cu晶格空位。结果表明,当温度从693 K升高到1093 K时,界面热阻减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laser-assisted Glass Frit Bonding Combined With Blue Light-shielding Dynamic resistance monitoring of aging process of pressureless sintered nano-silver joints Warpage simulation method development considering moiré inhomogeneous temperature field Size effects on segregated growth kinetics of interfacial IMC between Sn solder and Cu substrate Ultrasound-assisted soldering process performance of Sn-Ag-Ti(Ce, Ga) active solders on thin film ZnO substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1