V. Ulyanov, M. Koshelev, V. S. Kremlyova, S. Kharchuk
{"title":"Investigations of regularities in the accumulation of hydrogen-reduced slags in circulation circuits with lead-containing coolants","authors":"V. Ulyanov, M. Koshelev, V. S. Kremlyova, S. Kharchuk","doi":"10.3897/nucet.7.74154","DOIUrl":null,"url":null,"abstract":"The paper presents a computational analysis of regularities in the accumulation of slags during the interaction of lead and lead-bismuth coolants with oxygen gas. Oxidation of lead-containing coolants will cause the formation of lead oxide, while the formation of bismuth oxide is unlikely. Dosed supply of oxidizing gas to lead-containing coolants makes it possible to oxidize, selectively, chromium and nickel to their oxides without the slag formation from solid lead oxide. Regularities were studied which are involved in the lead oxide formation during the interaction of lead-containing coolants with oxygen gas. It has been found that, in the process of interacting with oxygen gas, a lead-bismuth alloy is oxidized 1.7 times as intensively as lead, this being explained by the presence of bismuth in the alloy. Bismuth is oxidized more intensively than both lead and the lead-bismuth alloy. The inert gas overpressure during depressurization does not prevent air oxygen from entering the circuit, and the dependence of the nitrogen and oxygen flow into the circuit on the argon flow out of the loop is close to linear regardless of the circuit state (cold, without coolant; heated, without coolant; heated, with circulating coolant). Oxygen is a chemically active impurity and is absorbed by the circuit; it is therefore important to control nitrogen in the gas spaces of the reactor and research plant circuits with lead-containing coolants. This will make it possible to signal, in a timely manner, the ingress of oxygen into the circuit and to take measures required to avoid or reduce the scale of the slag formation from lead oxides.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/nucet.7.74154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a computational analysis of regularities in the accumulation of slags during the interaction of lead and lead-bismuth coolants with oxygen gas. Oxidation of lead-containing coolants will cause the formation of lead oxide, while the formation of bismuth oxide is unlikely. Dosed supply of oxidizing gas to lead-containing coolants makes it possible to oxidize, selectively, chromium and nickel to their oxides without the slag formation from solid lead oxide. Regularities were studied which are involved in the lead oxide formation during the interaction of lead-containing coolants with oxygen gas. It has been found that, in the process of interacting with oxygen gas, a lead-bismuth alloy is oxidized 1.7 times as intensively as lead, this being explained by the presence of bismuth in the alloy. Bismuth is oxidized more intensively than both lead and the lead-bismuth alloy. The inert gas overpressure during depressurization does not prevent air oxygen from entering the circuit, and the dependence of the nitrogen and oxygen flow into the circuit on the argon flow out of the loop is close to linear regardless of the circuit state (cold, without coolant; heated, without coolant; heated, with circulating coolant). Oxygen is a chemically active impurity and is absorbed by the circuit; it is therefore important to control nitrogen in the gas spaces of the reactor and research plant circuits with lead-containing coolants. This will make it possible to signal, in a timely manner, the ingress of oxygen into the circuit and to take measures required to avoid or reduce the scale of the slag formation from lead oxides.