Effect of grafted polyurethane on oil spill remediation in the aquatic environment

Abdullah Abdul-Lateef Al-Khalaf, H. Al-Lami, A. F. Abbas
{"title":"Effect of grafted polyurethane on oil spill remediation in the aquatic environment","authors":"Abdullah Abdul-Lateef Al-Khalaf, H. Al-Lami, A. F. Abbas","doi":"10.24200/amecj.v6.i02.238","DOIUrl":null,"url":null,"abstract":"The aquatic environment may be seriously harmed when cargo gases, diesel, and their compounds leak or are accidentally spilled onto the water's surface. Oil exploration also leads to water contamination. The remaining oil coats the water's surface, resulting in the formation of a thin emulsion of water and oil. Three novel compounds with long chains of linear alkyl groups were grafted to flexible polyurethane (R-FPU) to clean up oil spills. The sorption testing was thoroughly examined and contrasted with the aid of crude oil, diesel fuel, and water-oil systems. It was found that as compared to ungrafted FPU, the chemical sorption of crude oil and diesel fuel was boosted by modified FPU cubes, while water sorption was reduced by roughly 57%. The sorption competence of the modified FPU was highly correlated with the length of the alkyl chain, with the longer alkyl chain significantly increasing sorption capacity. The results demonstrate that oil may be successfully cleaned using modified FPU cubes.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/amecj.v6.i02.238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aquatic environment may be seriously harmed when cargo gases, diesel, and their compounds leak or are accidentally spilled onto the water's surface. Oil exploration also leads to water contamination. The remaining oil coats the water's surface, resulting in the formation of a thin emulsion of water and oil. Three novel compounds with long chains of linear alkyl groups were grafted to flexible polyurethane (R-FPU) to clean up oil spills. The sorption testing was thoroughly examined and contrasted with the aid of crude oil, diesel fuel, and water-oil systems. It was found that as compared to ungrafted FPU, the chemical sorption of crude oil and diesel fuel was boosted by modified FPU cubes, while water sorption was reduced by roughly 57%. The sorption competence of the modified FPU was highly correlated with the length of the alkyl chain, with the longer alkyl chain significantly increasing sorption capacity. The results demonstrate that oil may be successfully cleaned using modified FPU cubes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
接枝聚氨酯在水生环境溢油修复中的作用
当货物气体、柴油及其化合物泄漏或意外泄漏到水面时,水生环境可能受到严重损害。石油开采也会导致水污染。剩余的油覆盖在水面上,形成了一层薄薄的水和油的乳液。将三种具有长链线性烷基基团的新型化合物接枝到柔性聚氨酯(R-FPU)上,以清除泄漏的石油。对吸附试验进行了彻底的检查,并与原油、柴油和水-油系统进行了对比。结果表明,与未接枝FPU相比,改性后的FPU立方体提高了原油和柴油的化学吸附,而吸水率降低了约57%。改性FPU的吸附能力与烷基链的长度高度相关,烷基链越长吸附能力越强。结果表明,使用改性的FPU立方体可以成功地清洗油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Determine methylene blue based on carbon paste electrode modified with nanoparticles of nickel oxide-nitrogen carbon quantum dots and carbon structures by cyclic voltammetry A review: Exploratory analysis of recent advancement in green analytical chemistry application the Determination and evaluation of trace elements in the blood of radiography workers using graphite furnace atomic absorption spectrometry Chromium desalinization using novel chitosan functionalized iron oxide- biochar composites: Analysis, synthesis, characterization and adsorption performance Solid phase-fabrication of multi-walled carbon nanotubes and their derivatives for efficient extraction and analysis of Bismarck Brown-Y Dye from aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1