{"title":"I/Q mismatch compensation ΔΣ modulator using ternary capacitor rotation technique","authors":"Masaki Yonekura, H. Ishikuro","doi":"10.1109/ESSCIRC.2015.7313869","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique to suppress I/Q mismatch and decrease power consumption and chip area. The proposed technique uses two methods for all integrators and DAC in the modulator which are main sources of the mismatch and power. One is proposed ternary capacitor rotation technique to compensate the I/Q mismatch and achieve high image-rejection. The other is amplifier-sharing technique to reduce the number of amplifier and power consumption. The third-order 1bit delta-sigma modulator was designed in 65nm CMOS process, and fabricated test chip achieved an image-rejection ratio (IRR) of higher than 70dB throughout a 1MHz bandwidth. The overall power consumption is 12.7mW including I/Q channels.","PeriodicalId":11845,"journal":{"name":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","volume":"12 1","pages":"229-232"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2015.7313869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a new technique to suppress I/Q mismatch and decrease power consumption and chip area. The proposed technique uses two methods for all integrators and DAC in the modulator which are main sources of the mismatch and power. One is proposed ternary capacitor rotation technique to compensate the I/Q mismatch and achieve high image-rejection. The other is amplifier-sharing technique to reduce the number of amplifier and power consumption. The third-order 1bit delta-sigma modulator was designed in 65nm CMOS process, and fabricated test chip achieved an image-rejection ratio (IRR) of higher than 70dB throughout a 1MHz bandwidth. The overall power consumption is 12.7mW including I/Q channels.