{"title":"Based on model-driven fast iterative shrinkage thresholding network for bioluminescence tomography reconstruction","authors":"Heng Zhang, Xiaowei He, Hongbo Guo, Yanqiu Liu, Shuangchen Li, Yizhe Zhao, Xuelei He, Jingjing Yu, Yuqing Hou","doi":"10.1117/12.2654054","DOIUrl":null,"url":null,"abstract":"Bioluminescence tomography (BLT) is an effective noninvasive molecular imaging modality, it has shown great potential for studying and monitoring disease progression in pre-clinical imaging. As the BLT is an inherent highly ill-posed inverse problem, it is still a challenge to obtain an accurate reconstruction result. Some algorithms have been proposed to solve highly ill posedness of inverse problems. Nevertheless, Existing methods always need to consume large time or have low interpretability. Thus, in this paper, we proposed a novel model-driven deep learning network, which unfolding the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) algorithm into a deep network, named FISTA-Net to overcome the above shortcoming. FISTA-Net is formed from three modules, gradient descent module, proximal mapping module and accelerate module. Key parameters of FISTA-Net including the gradient step size, thresholding value are learned from training data. The experimental results, evaluated both visually and quantitatively, show that the FISTA-Net can achieve a high-quality reconstruction result of BLT.","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"162 1","pages":"124643W - 124643W-6"},"PeriodicalIF":2.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2654054","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Bioluminescence tomography (BLT) is an effective noninvasive molecular imaging modality, it has shown great potential for studying and monitoring disease progression in pre-clinical imaging. As the BLT is an inherent highly ill-posed inverse problem, it is still a challenge to obtain an accurate reconstruction result. Some algorithms have been proposed to solve highly ill posedness of inverse problems. Nevertheless, Existing methods always need to consume large time or have low interpretability. Thus, in this paper, we proposed a novel model-driven deep learning network, which unfolding the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) algorithm into a deep network, named FISTA-Net to overcome the above shortcoming. FISTA-Net is formed from three modules, gradient descent module, proximal mapping module and accelerate module. Key parameters of FISTA-Net including the gradient step size, thresholding value are learned from training data. The experimental results, evaluated both visually and quantitatively, show that the FISTA-Net can achieve a high-quality reconstruction result of BLT.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.