An analog on-chip learning circuit architecture of the weight perturbation algorithm

F. Diotalevi, M. Valle, G. M. Bo, E. Biglieri, D. Caviglia
{"title":"An analog on-chip learning circuit architecture of the weight perturbation algorithm","authors":"F. Diotalevi, M. Valle, G. M. Bo, E. Biglieri, D. Caviglia","doi":"10.1109/ISCAS.2000.857120","DOIUrl":null,"url":null,"abstract":"In this paper we present the analog on-chip learning architecture of a gradient descent learning algorithm: the Weight Perturbation learning algorithm. From the circuit implementation point of view our approach is based on current mode and translinear operated circuits. The proposed architecture is very efficient in terms of speed, size, precision and power consumption; moreover it exhibits also high scalability and modularity.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we present the analog on-chip learning architecture of a gradient descent learning algorithm: the Weight Perturbation learning algorithm. From the circuit implementation point of view our approach is based on current mode and translinear operated circuits. The proposed architecture is very efficient in terms of speed, size, precision and power consumption; moreover it exhibits also high scalability and modularity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种模拟权摄动算法的片上学习电路结构
在本文中,我们提出了一种梯度下降学习算法的模拟片上学习结构:权重摄动学习算法。从电路实现的角度来看,我们的方法是基于电流模式和跨线性操作电路。所提出的架构在速度、尺寸、精度和功耗方面非常高效;此外,它还具有很高的可扩展性和模块化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel class A CMOS current conveyor Adaptive envelope-constrained filter design Phenomenological model of false lock in the sampling phase-locked loop A novel two-port 6T CMOS SRAM cell structure for low-voltage VLSI SRAM with single-bit-line simultaneous read-and-write access (SBLSRWA) capability Real-time calculus for scheduling hard real-time systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1