{"title":"An integrated methodology for accurate extraction of S/D series resistance components in nanoscale MOSFETs","authors":"Seong-Dong Kim, S. Narasimha, K. Rim","doi":"10.1109/IEDM.2005.1609291","DOIUrl":null,"url":null,"abstract":"A new integrated methodology for the accurate extraction of source/drain (S/D) series resistance components with emphasis on the spreading and contact resistance elements is presented. For the first time, detailed extractions of lateral extension doping abruptness and silicide specific contact resistance are made directly from 90nm-node SOI MOSFET characterization. The spreading resistance due to the lateral doping gradient is found to be a key component contributing to total parasitics, and the doping gradient engineering and scaling of specific contact resistance must be employed to overcome this parasitic limitation in future nanoscale CMOS performance roadmap","PeriodicalId":13071,"journal":{"name":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","volume":"8 1","pages":"149-152"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2005.1609291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
A new integrated methodology for the accurate extraction of source/drain (S/D) series resistance components with emphasis on the spreading and contact resistance elements is presented. For the first time, detailed extractions of lateral extension doping abruptness and silicide specific contact resistance are made directly from 90nm-node SOI MOSFET characterization. The spreading resistance due to the lateral doping gradient is found to be a key component contributing to total parasitics, and the doping gradient engineering and scaling of specific contact resistance must be employed to overcome this parasitic limitation in future nanoscale CMOS performance roadmap