In Search of a “Stable Green Nanofluid” for Applications in High Voltage Equipment

Mohammad Zeagham, Tariq M. Jadoon, M. Qureshi, B. Qureshi, S. Sabir
{"title":"In Search of a “Stable Green Nanofluid” for Applications in High Voltage Equipment","authors":"Mohammad Zeagham, Tariq M. Jadoon, M. Qureshi, B. Qureshi, S. Sabir","doi":"10.3390/engproc2021012058","DOIUrl":null,"url":null,"abstract":"Nanofluids are considered as the next generation of dielectric fluids due to their higher thermal conductivity and dielectric properties. In this investigation, locally produced ester oils, such as rice bran oil (RBO) and jatropha oil (JO), were compared with mineral oil (MO). Initially, hydrophilic SiO2 nano particles were used to prepare nanofluids using RBO and MO. However, results showed that with loading of nanoparticles (NPs) up to 0.075 g/L, the dielectric strength (DS) of MO based NFs increased but decreased drastically with further increase in loading as these suffered agglomeration and sedimentation in less than 72 h. To overcome this drawback, NPs were functionalized under plasma discharge. These efforts also did not yield many favorable results. Instead, hydrophobic fumed silica NPs grafted with hexamethyldi-siloxane (HMDS) were utilized for further study. Plasma treated NFs exhibited improved DS, as well as excellent dispersibility and stability.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nanofluids are considered as the next generation of dielectric fluids due to their higher thermal conductivity and dielectric properties. In this investigation, locally produced ester oils, such as rice bran oil (RBO) and jatropha oil (JO), were compared with mineral oil (MO). Initially, hydrophilic SiO2 nano particles were used to prepare nanofluids using RBO and MO. However, results showed that with loading of nanoparticles (NPs) up to 0.075 g/L, the dielectric strength (DS) of MO based NFs increased but decreased drastically with further increase in loading as these suffered agglomeration and sedimentation in less than 72 h. To overcome this drawback, NPs were functionalized under plasma discharge. These efforts also did not yield many favorable results. Instead, hydrophobic fumed silica NPs grafted with hexamethyldi-siloxane (HMDS) were utilized for further study. Plasma treated NFs exhibited improved DS, as well as excellent dispersibility and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找用于高压设备的“稳定的绿色纳米流体”
纳米流体由于具有更高的导热性和介电性能而被认为是下一代介电流体。在这项调查中,当地生产的酯油,如米糠油(RBO)和麻疯树油(JO),与矿物油(MO)进行了比较。研究结果表明,当纳米颗粒(NPs)负载高达0.075 g/L时,MO基纳米流体的介电强度(DS)增加,但随着负载的进一步增加,其介电强度(DS)急剧下降,因为这些纳米颗粒在不到72 h的时间内就会发生团聚和沉积。为了克服这一缺点,NPs在等离子体放电下被功能化。这些努力也没有产生很多有利的结果。取而代之的是,接枝六甲基二硅氧烷(HMDS)的疏水气相二氧化硅NPs被用于进一步的研究。等离子体处理后的NFs具有较好的分散性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition Location-Assistive and Real-Time Query IoT-Based Transport System The Thermal Analysis of a Sensible Heat Thermal Energy Storage System Using Circular-Shaped Slag and Concrete for Medium- to High-Temperature Applications Performance Enhancement of Photovoltaic Water Pumping System Based on BLDC Motor under Partial Shading Condition Solar Powered DC Refrigerator for Small Scale Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1