Additive Neural Network Based Static and Dynamic Distortion Modeling for Prior-Knowledge-Free Nyquist ADC Characterization

Danfeng Zhai, P. Li, Jiushan Zhang, Chixiao Chen, Fan Ye, Junyan Ren
{"title":"Additive Neural Network Based Static and Dynamic Distortion Modeling for Prior-Knowledge-Free Nyquist ADC Characterization","authors":"Danfeng Zhai, P. Li, Jiushan Zhang, Chixiao Chen, Fan Ye, Junyan Ren","doi":"10.1109/MWSCAS47672.2021.9531763","DOIUrl":null,"url":null,"abstract":"This paper presents a prior-knowledge free modeling method for Nyquist ADCs. Current ADC modeling methods mainly base on known circuit implementation and non-idealities, thus hard to recover non-linear static and dynamic distortions. The proposed method adopts an additive neural network with binary inputs to achieve a data driven, prior-knowledge free modeling method. Both static and dynamic distortions are modeled by two separate sub-network. Also, a batch generation scheme is used to enhance the noise insensitivity, facilitating small sample training, when only simulation results are available. The proposed methods are validated by three typical non-ideal ADC designs, including a SAR ADC with capacitor mismatch, an ultra-high speed ADC with NMOS sampling switch, and a SAR ADC with a bandwidth limited reference source. All the non-linearity and FFT spectrum plots show the proposing model can accurately model both static and dynamic distortion with less than 1dB spur mismatch.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"56 1","pages":"292-296"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a prior-knowledge free modeling method for Nyquist ADCs. Current ADC modeling methods mainly base on known circuit implementation and non-idealities, thus hard to recover non-linear static and dynamic distortions. The proposed method adopts an additive neural network with binary inputs to achieve a data driven, prior-knowledge free modeling method. Both static and dynamic distortions are modeled by two separate sub-network. Also, a batch generation scheme is used to enhance the noise insensitivity, facilitating small sample training, when only simulation results are available. The proposed methods are validated by three typical non-ideal ADC designs, including a SAR ADC with capacitor mismatch, an ultra-high speed ADC with NMOS sampling switch, and a SAR ADC with a bandwidth limited reference source. All the non-linearity and FFT spectrum plots show the proposing model can accurately model both static and dynamic distortion with less than 1dB spur mismatch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加性神经网络的无先验知识奈奎斯特ADC特性静态和动态失真建模
提出了一种Nyquist adc的无先验知识建模方法。目前的ADC建模方法主要基于已知的电路实现和非理想性,因此难以恢复非线性静态和动态失真。该方法采用具有二值输入的加性神经网络,实现了一种数据驱动、无先验知识的建模方法。静态和动态变形均由两个独立的子网络建模。同时,采用批量生成方案增强噪声不敏感性,便于在只有仿真结果的情况下进行小样本训练。通过三种典型的非理想ADC设计,包括电容失配的SAR ADC、带NMOS采样开关的超高速ADC和带宽受限参考源的SAR ADC,验证了所提方法的有效性。所有非线性和FFT频谱图都表明,该模型可以准确地模拟静态和动态失真,且杂散失配小于1dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1