M. Kovačič, J. Krč, B. Lipovšek, Wei‐Chao Chen, M. Edoff, P. Bolt, J. Deelen, M. Zhukova, J. Lontchi, D. Flandre, P. Salomé, M. Topič
{"title":"Modelling Supported Design of Light Management\nStructures in Ultra-Thin Cigs Photovoltaic Devices","authors":"M. Kovačič, J. Krč, B. Lipovšek, Wei‐Chao Chen, M. Edoff, P. Bolt, J. Deelen, M. Zhukova, J. Lontchi, D. Flandre, P. Salomé, M. Topič","doi":"10.33180/infmidem2019.307","DOIUrl":null,"url":null,"abstract":"Chalcopyrite solar cells exhibit one of the highest conversion efficiencies among thin-film solar cell technologies (> 23.3%), however a considerably thick absorber ≥1.8 μm is required for an efficient absorption of the long-wavelength light and collection of charge carriers. In order to minimize the material consumption and to accelerate the fabrication process, further thinning down of the absorber layer is important. Using a thin absorber layer results in a highly reduced photocurrent density and to compensate for it an effective light management needs to be introduced. Experimentally supported, advanced optical simulations in a PV module configuration, i.e. solar cell structure including the encapsulation and front glass are employed to design solutions to increase the short current density of devices with ultra-thin (500 nm) absorbers. In particular (i) highly reflective metal back reflector (BR), (ii) internal nano-textures and (iii) external textures by applying a light management (LM) foil are investigated by simulations. Experimental verification of simulation results is presented for the external texture case. In the scope of this contribution we show that any individual aforementioned approach is not sufficient to compensate for the short circuit current drop of the thin CIGS, but only a combination of highly reflective back contact and introduction of textures (internal or external) is able to compensate and also to exceed (by more than 5 % for internal texture) photocurrent density of a thick (1800 nm) CIGS absorber.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"81 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2019.307","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
Abstract
Chalcopyrite solar cells exhibit one of the highest conversion efficiencies among thin-film solar cell technologies (> 23.3%), however a considerably thick absorber ≥1.8 μm is required for an efficient absorption of the long-wavelength light and collection of charge carriers. In order to minimize the material consumption and to accelerate the fabrication process, further thinning down of the absorber layer is important. Using a thin absorber layer results in a highly reduced photocurrent density and to compensate for it an effective light management needs to be introduced. Experimentally supported, advanced optical simulations in a PV module configuration, i.e. solar cell structure including the encapsulation and front glass are employed to design solutions to increase the short current density of devices with ultra-thin (500 nm) absorbers. In particular (i) highly reflective metal back reflector (BR), (ii) internal nano-textures and (iii) external textures by applying a light management (LM) foil are investigated by simulations. Experimental verification of simulation results is presented for the external texture case. In the scope of this contribution we show that any individual aforementioned approach is not sufficient to compensate for the short circuit current drop of the thin CIGS, but only a combination of highly reflective back contact and introduction of textures (internal or external) is able to compensate and also to exceed (by more than 5 % for internal texture) photocurrent density of a thick (1800 nm) CIGS absorber.
期刊介绍:
Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material.
Topics of interest include:
Microelectronics,
Semiconductor devices,
Nanotechnology,
Electronic circuits and devices,
Electronic sensors and actuators,
Microelectromechanical systems (MEMS),
Medical electronics,
Bioelectronics,
Power electronics,
Embedded system electronics,
System control electronics,
Signal processing,
Microwave and millimetre-wave techniques,
Wireless and optical communications,
Antenna technology,
Optoelectronics,
Photovoltaics,
Ceramic materials for electronic devices,
Thick and thin film materials for electronic devices.