{"title":"Selective Value Coupling Learning for Detecting Outliers in High-Dimensional Categorical Data","authors":"Guansong Pang, Hongzuo Xu, Longbing Cao, Wentao Zhao","doi":"10.1145/3132847.3132994","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel framework, namely SelectVC and its instance POP, for learning selective value couplings (i.e., interactions between the full value set and a set of outlying values) to identify outliers in high-dimensional categorical data. Existing outlier detection methods work on a full data space or feature subspaces that are identified independently from subsequent outlier scoring. As a result, they are significantly challenged by overwhelming irrelevant features in high-dimensional data due to the noise brought by the irrelevant features and its huge search space. In contrast, SelectVC works on a clean and condensed data space spanned by selective value couplings by jointly optimizing outlying value selection and value outlierness scoring. Its instance POP defines a value outlierness scoring function by modeling a partial outlierness propagation process to capture the selective value couplings. POP further defines a top-k outlying value selection method to ensure its scalability to the huge search space. We show that POP (i) significantly outperforms five state-of-the-art full space- or subspace-based outlier detectors and their combinations with three feature selection methods on 12 real-world high-dimensional data sets with different levels of irrelevant features; and (ii) obtains good scalability, stable performance w.r.t. k, and fast convergence rate.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"17 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This paper introduces a novel framework, namely SelectVC and its instance POP, for learning selective value couplings (i.e., interactions between the full value set and a set of outlying values) to identify outliers in high-dimensional categorical data. Existing outlier detection methods work on a full data space or feature subspaces that are identified independently from subsequent outlier scoring. As a result, they are significantly challenged by overwhelming irrelevant features in high-dimensional data due to the noise brought by the irrelevant features and its huge search space. In contrast, SelectVC works on a clean and condensed data space spanned by selective value couplings by jointly optimizing outlying value selection and value outlierness scoring. Its instance POP defines a value outlierness scoring function by modeling a partial outlierness propagation process to capture the selective value couplings. POP further defines a top-k outlying value selection method to ensure its scalability to the huge search space. We show that POP (i) significantly outperforms five state-of-the-art full space- or subspace-based outlier detectors and their combinations with three feature selection methods on 12 real-world high-dimensional data sets with different levels of irrelevant features; and (ii) obtains good scalability, stable performance w.r.t. k, and fast convergence rate.