GFRP reinforced high performance glass–bolted joints: Development of a simplified finite element-based method for analysis

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2022-05-31 DOI:10.1177/03093247221101789
M. Achintha
{"title":"GFRP reinforced high performance glass–bolted joints: Development of a simplified finite element-based method for analysis","authors":"M. Achintha","doi":"10.1177/03093247221101789","DOIUrl":null,"url":null,"abstract":"This paper presents the development of finite element (FE)-based computational models that can be used for predicting the failure load of GFRP-reinforced annealed and heat-strengthened glass–bolted joints. Stress analysis of a single-bolt, single-glass-piece case was first carried out in order to develop the computational models and to establish an appropriate failure criterion for the GFRP-reinforced glass–bolted joints. The computational models were then calibrated against the experimental results reported in a previous experimental study involving reference and reinforced double-lap tension joint test specimens. The paper shows that the failure of both reference and reinforced glass–bolted joints can be predicted using the maximum principal-tensile-stress-based failure of glass. The results also confirm that the use of adhesively bonded GFRP reinforcement has potential to increase the load capacity of the reinforced glass–bolted joints compared to the reference glass–bolted joints.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221101789","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the development of finite element (FE)-based computational models that can be used for predicting the failure load of GFRP-reinforced annealed and heat-strengthened glass–bolted joints. Stress analysis of a single-bolt, single-glass-piece case was first carried out in order to develop the computational models and to establish an appropriate failure criterion for the GFRP-reinforced glass–bolted joints. The computational models were then calibrated against the experimental results reported in a previous experimental study involving reference and reinforced double-lap tension joint test specimens. The paper shows that the failure of both reference and reinforced glass–bolted joints can be predicted using the maximum principal-tensile-stress-based failure of glass. The results also confirm that the use of adhesively bonded GFRP reinforcement has potential to increase the load capacity of the reinforced glass–bolted joints compared to the reference glass–bolted joints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
玻璃钢增强高性能玻璃螺栓连接:基于简化有限元分析方法的发展
本文介绍了基于有限元(FE)计算模型的发展,该模型可用于预测gfrp增强退火和热强化玻璃螺栓连接的破坏载荷。为了建立gfrp增强玻璃螺栓连接的计算模型和合理的破坏准则,首先对单螺栓、单玻璃片情况进行了应力分析。然后根据先前涉及参考和加固双搭接试件的实验研究报告的实验结果对计算模型进行校准。本文表明,用玻璃的最大主拉应力破坏可以预测参考节点和增强玻璃螺栓连接的破坏。结果还证实,与参考玻璃螺栓连接相比,使用粘接玻璃钢加固有可能提高增强玻璃螺栓连接的承载能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1