Evaluation of preference of multimedia content using deep neural networks for electroencephalography

Seong-eun Moon, Soobeom Jang, Jong-Seok Lee
{"title":"Evaluation of preference of multimedia content using deep neural networks for electroencephalography","authors":"Seong-eun Moon, Soobeom Jang, Jong-Seok Lee","doi":"10.1109/QoMEX.2018.8463373","DOIUrl":null,"url":null,"abstract":"Evaluation of quality of experience (Qo $E$) based on electroencephalography (EEG) has received great attention due to its capability of real-time Qo $E$ monitoring of users. However, it still suffers from rather low recognition accuracy. In this paper, we propose a novel method using deep neural networks toward improved modeling of EEG and thereby improved recognition accuracy. In particular, we aim to model spatio-temporal characteristics relevant for QoE analysis within learning models. The results demonstrate the effectiveness of the proposed method.","PeriodicalId":6618,"journal":{"name":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2018.8463373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Evaluation of quality of experience (Qo $E$) based on electroencephalography (EEG) has received great attention due to its capability of real-time Qo $E$ monitoring of users. However, it still suffers from rather low recognition accuracy. In this paper, we propose a novel method using deep neural networks toward improved modeling of EEG and thereby improved recognition accuracy. In particular, we aim to model spatio-temporal characteristics relevant for QoE analysis within learning models. The results demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的深度神经网络对多媒体内容偏好的评价
基于脑电图(EEG)的体验质量评价(Qo $E$)由于能够实时监测用户的体验质量而备受关注。然而,它的识别精度仍然很低。本文提出了一种利用深度神经网络改进脑电建模从而提高识别精度的新方法。特别是,我们的目标是在学习模型中建模与QoE分析相关的时空特征。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AMBIQUAL - a full reference objective quality metric for ambisonic spatial audio Getting Crevices, Cracks, and Grooves in Line: Anomaly Categorization for AQC Judgment Models Impact of Virtual Environments on Motivation and Engagement During Exergames Evaluation of preference of multimedia content using deep neural networks for electroencephalography A Comparative Quality Assessment Study for Gaming and Non-Gaming Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1