A Comparative Quality Assessment Study for Gaming and Non-Gaming Videos

Nabajeet Barman, M. Martini, Saman Zadtootaghaj, S. Möller, Sanghoon Lee
{"title":"A Comparative Quality Assessment Study for Gaming and Non-Gaming Videos","authors":"Nabajeet Barman, M. Martini, Saman Zadtootaghaj, S. Möller, Sanghoon Lee","doi":"10.1109/QoMEX.2018.8463403","DOIUrl":null,"url":null,"abstract":"Recent years have seen a tremendous increase in video traffic with the rise of Over The Top (OTT) services. Along with traditional Video on demand (VoD) streaming services (e.g., Netflix, YouTube), live video services (e.g., Twitch. tv, YouTubeGaming, Facebook Live) have also resulted in a tremendous share of Internet traffic. Among the live streaming services, gaming video streaming has a major share, with Twitch.tv alone currently responsible for the fourth highest peak Internet traffic in the US. As a consequence of this, and due to the fact that gaming videos are artificial and synthetic, it is worth investigating the specificity of gaming videos in relation to compression and the consequent end user QoE. In this paper, we present an objective and subjective quality comparison study for regular videos and gaming videos, with 30 video sequences (15 per type), encoded using the state of the art encoder HEVC. We discuss the similarity and dissimilarity between the two video types and also discuss how these observations can be used to improve the end user QoE.","PeriodicalId":6618,"journal":{"name":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"45 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2018.8463403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Recent years have seen a tremendous increase in video traffic with the rise of Over The Top (OTT) services. Along with traditional Video on demand (VoD) streaming services (e.g., Netflix, YouTube), live video services (e.g., Twitch. tv, YouTubeGaming, Facebook Live) have also resulted in a tremendous share of Internet traffic. Among the live streaming services, gaming video streaming has a major share, with Twitch.tv alone currently responsible for the fourth highest peak Internet traffic in the US. As a consequence of this, and due to the fact that gaming videos are artificial and synthetic, it is worth investigating the specificity of gaming videos in relation to compression and the consequent end user QoE. In this paper, we present an objective and subjective quality comparison study for regular videos and gaming videos, with 30 video sequences (15 per type), encoded using the state of the art encoder HEVC. We discuss the similarity and dissimilarity between the two video types and also discuss how these observations can be used to improve the end user QoE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
游戏和非游戏视频的比较质量评估研究
近年来,随着OTT (Over the Top)服务的兴起,视频流量大幅增加。除了传统的视频点播(VoD)流媒体服务(如Netflix, YouTube),直播视频服务(如Twitch)。tv, youtubeaming, Facebook Live)也带来了巨大的互联网流量份额。在直播服务中,游戏视频流占有很大的份额,比如Twitch。目前,仅电视就负责美国第四高峰的互联网流量。因此,由于游戏视频是人工合成的,我们有必要研究一下游戏视频在压缩和最终用户QoE方面的特殊性。在本文中,我们对常规视频和游戏视频进行了客观和主观的质量比较研究,其中30个视频序列(每种类型15个)使用最先进的编码器HEVC进行编码。我们讨论了这两种视频类型之间的相似性和差异性,并讨论了如何使用这些观察结果来改善最终用户的QoE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AMBIQUAL - a full reference objective quality metric for ambisonic spatial audio Getting Crevices, Cracks, and Grooves in Line: Anomaly Categorization for AQC Judgment Models Impact of Virtual Environments on Motivation and Engagement During Exergames Evaluation of preference of multimedia content using deep neural networks for electroencephalography A Comparative Quality Assessment Study for Gaming and Non-Gaming Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1