Forecasting the state-of-charge of Li-ion batteries using fuzzy inference system and fuzzy identification

Ho-Ta Lin, T. Liang, Shih-Ming Chen, Kuan-Wen Li
{"title":"Forecasting the state-of-charge of Li-ion batteries using fuzzy inference system and fuzzy identification","authors":"Ho-Ta Lin, T. Liang, Shih-Ming Chen, Kuan-Wen Li","doi":"10.1109/ECCE.2012.6342349","DOIUrl":null,"url":null,"abstract":"This study proposes a method to forecast the state of charge (SOC) of Li-ion batteries using Fuzzy inference system and Fuzzy identification. In this study, 5 pieces of Li-Co batteries were used in this research for the life-cycle testing. The cycle testing includes CC (0.5C)/CV (4.2V) charge, CC (0.2, 0.4, 0.6, 0.8, 1C) discharge, and the rest time (one minute). The life-cycle testing indicates the relations of the voltage, the discharging time and the SOC with various life-cycles and various discharging currents. This study forecast the SOC with the data of the above, Fuzzy inference system and Fuzzy identification. This study also compares the SOC forecast accuracy using Fuzzy inference system, Fuzzy identification, and Fuzzy inference system combined with Fuzzy identification. The testing results reveal that the average error, the standard deviation, the maximum error, and the minimum error of the forecasted SOC was -0.4%, 6%, 18% and 25.1%, respectively. The 81.48% of the forecasted SOC error is within ± 5%.","PeriodicalId":6401,"journal":{"name":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"40 1","pages":"3175-3181"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2012.6342349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study proposes a method to forecast the state of charge (SOC) of Li-ion batteries using Fuzzy inference system and Fuzzy identification. In this study, 5 pieces of Li-Co batteries were used in this research for the life-cycle testing. The cycle testing includes CC (0.5C)/CV (4.2V) charge, CC (0.2, 0.4, 0.6, 0.8, 1C) discharge, and the rest time (one minute). The life-cycle testing indicates the relations of the voltage, the discharging time and the SOC with various life-cycles and various discharging currents. This study forecast the SOC with the data of the above, Fuzzy inference system and Fuzzy identification. This study also compares the SOC forecast accuracy using Fuzzy inference system, Fuzzy identification, and Fuzzy inference system combined with Fuzzy identification. The testing results reveal that the average error, the standard deviation, the maximum error, and the minimum error of the forecasted SOC was -0.4%, 6%, 18% and 25.1%, respectively. The 81.48% of the forecasted SOC error is within ± 5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊推理和模糊识别的锂离子电池电量预测
提出了一种基于模糊推理系统和模糊识别的锂离子电池荷电状态预测方法。本研究使用5块锂钴电池进行寿命周期测试。循环测试包括CC (0.5C)/CV (4.2V)充电,CC(0.2、0.4、0.6、0.8、1C)放电,休息时间(1分钟)。寿命周期测试显示了不同寿命周期和不同放电电流下电压、放电时间和SOC的关系。本研究利用上述数据,运用模糊推理系统和模糊辨识对SOC进行预测。本研究还比较了模糊推理系统、模糊辨识系统、模糊推理系统与模糊辨识相结合的SOC预测准确度。测试结果表明,预测SOC的平均误差为-0.4%,标准差为6%,最大误差为18%,最小误差为25.1%。81.48%的预测SOC误差在±5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alternative excitation strategies for a wound rotor synchronous machine drive Design of LCL filters in consideration of parameter variations for grid-connected converters Design, modelling and testing of a high speed induction machine drive A modified Boost topology with simultaneous AC and DC load Optimal zero-vector configuration for space vector modulated AC-DC matrix converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1