Molecular Dynamics Study of Orientation-dependent Tensile Properties of Si Nanowires with Native Oxide: Surface Stress and Surface Energy Effects

Sina Zare Pakzad, M. N. Esfahani, B. E. Alaca
{"title":"Molecular Dynamics Study of Orientation-dependent Tensile Properties of Si Nanowires with Native Oxide: Surface Stress and Surface Energy Effects","authors":"Sina Zare Pakzad, M. N. Esfahani, B. E. Alaca","doi":"10.1109/NANO51122.2021.9514301","DOIUrl":null,"url":null,"abstract":"Molecular dynamics (MD) simulations are employed to investigate the influence of native oxide layer on the mechanical properties of Si nanowires (NWs) through analyzing surface stress and surface energy effect. This work studies the tensile response of Si NWs along <100> and <110> crystal orientations. MD results are compared with the traditional core-shell model on the estimation of the modulus of elasticity of Si NWs with a native oxide layer. Density functional theory (DFT) methods are used to verify MD results on the surface energy calculations. Surface stress and surface elastic constants are studied for native oxide surface using MD simulations and compared with unreconstructed surfaces. In this work, the role of native oxide is addressed to understand the difference between experimental and computational findings on the modulus of elasticity of Si NWs.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"10 1","pages":"370-373"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Molecular dynamics (MD) simulations are employed to investigate the influence of native oxide layer on the mechanical properties of Si nanowires (NWs) through analyzing surface stress and surface energy effect. This work studies the tensile response of Si NWs along <100> and <110> crystal orientations. MD results are compared with the traditional core-shell model on the estimation of the modulus of elasticity of Si NWs with a native oxide layer. Density functional theory (DFT) methods are used to verify MD results on the surface energy calculations. Surface stress and surface elastic constants are studied for native oxide surface using MD simulations and compared with unreconstructed surfaces. In this work, the role of native oxide is addressed to understand the difference between experimental and computational findings on the modulus of elasticity of Si NWs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有天然氧化物的硅纳米线的定向拉伸性能的分子动力学研究:表面应力和表面能效应
采用分子动力学(MD)模拟方法,通过分析表面应力和表面能效应,研究天然氧化层对硅纳米线力学性能的影响。本文研究了Si NWs沿晶向和晶向的拉伸响应。将MD计算结果与传统的核壳模型进行了比较,计算了含天然氧化层硅纳米墙的弹性模量。用密度泛函理论(DFT)方法对表面能计算的MD结果进行了验证。利用MD模拟研究了原生氧化表面的表面应力和表面弹性常数,并与未重构表面进行了比较。在这项工作中,解决了天然氧化物的作用,以了解在Si NWs弹性模量的实验和计算结果之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copper-MWCNT Composite: A Solution to Breakdown in Copper Interconnects Si Nanopillar/SiGe Composite Structure for Thermally Managed Nano-devices Reservoir Computing System using Biomolecular Memristor Electrothermal Parameters of Graphene Nanoplatelets Films High-performance VOx-based memristors with ultralow switching voltages prepared at room temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1