{"title":"TC-CNN: Trajectory Compression based on Convolutional Neural Network","authors":"Yulong Wang, Jingwang Tang, Zheshu Jia","doi":"10.5220/0010577801700176","DOIUrl":null,"url":null,"abstract":"With the Automatic Identification System installed on more and more ships, people can collect a large number of ship-running data, and the relevant maritime departments and shipping companies can also monitor the running status of ships in real-time and schedule at any time. However, it is challenging to compress a large number of ship trajectory data so as to reduce redundant information and save storage space. The existing trajectory compression algorithms manage to find proper thresholds to achieve better compression effect, which is labor-intensive. We propose a new trajectory compression algorithm which utilizes Convolutional Neural Network to perform points classification, and then obtain a compressed trajectory by removing redundant points according to points classification results, and finally reduce the compression error. Our approach does not need to set the threshold manually. Experiments show that our approach outperforms conventional trajectory compression algorithms in terms of average compression error and fitting degree under the same compression rate, and has certain advantages in time efficiency.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"2 1","pages":"170-176"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010577801700176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the Automatic Identification System installed on more and more ships, people can collect a large number of ship-running data, and the relevant maritime departments and shipping companies can also monitor the running status of ships in real-time and schedule at any time. However, it is challenging to compress a large number of ship trajectory data so as to reduce redundant information and save storage space. The existing trajectory compression algorithms manage to find proper thresholds to achieve better compression effect, which is labor-intensive. We propose a new trajectory compression algorithm which utilizes Convolutional Neural Network to perform points classification, and then obtain a compressed trajectory by removing redundant points according to points classification results, and finally reduce the compression error. Our approach does not need to set the threshold manually. Experiments show that our approach outperforms conventional trajectory compression algorithms in terms of average compression error and fitting degree under the same compression rate, and has certain advantages in time efficiency.