The use of zinc metalloporphyrin grafted magnetic nanoparticles for the removal of sulfate ions from wastewaters

T. Poursaberi, A. M. Beigi
{"title":"The use of zinc metalloporphyrin grafted magnetic nanoparticles for the removal of sulfate ions from wastewaters","authors":"T. Poursaberi, A. M. Beigi","doi":"10.24200/AMECJ.V2.I2.62","DOIUrl":null,"url":null,"abstract":"This study investigates an application of zinc metalloporphyrin grafted Fe3O4 nanoparticles as a new adsorbent for removal of sulfate ions from wastewaters. The modification of magnetite nanoparticles was conducted by 3-aminopropyltriethoxysilane followed by zinc (II) porphyrin in order to enhance the removal of sulfate ions. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) was used to characterize the synthesized nano sorbent. The effect of important experimental factors such as pH, contact time, sorbent dosage and some co-existing anions present in aqueous solutions were investigated. Under optimal conditions (i.e. contact time: 30 min, pH: 6.5 and nanosorbents dosage: 100 mg) for a sulfate sample (50 mL, 50 mgL-1 ) the percentage of the extracted sulfate ions was 94.5%. Regeneration of sulfate adsorbed material could be possible by NaOH solution and the modified magnetic nano sorbent exhibited good reusability.","PeriodicalId":7797,"journal":{"name":"Analytical Methods in Environmental Chemistry Journal","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods in Environmental Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24200/AMECJ.V2.I2.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study investigates an application of zinc metalloporphyrin grafted Fe3O4 nanoparticles as a new adsorbent for removal of sulfate ions from wastewaters. The modification of magnetite nanoparticles was conducted by 3-aminopropyltriethoxysilane followed by zinc (II) porphyrin in order to enhance the removal of sulfate ions. Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) was used to characterize the synthesized nano sorbent. The effect of important experimental factors such as pH, contact time, sorbent dosage and some co-existing anions present in aqueous solutions were investigated. Under optimal conditions (i.e. contact time: 30 min, pH: 6.5 and nanosorbents dosage: 100 mg) for a sulfate sample (50 mL, 50 mgL-1 ) the percentage of the extracted sulfate ions was 94.5%. Regeneration of sulfate adsorbed material could be possible by NaOH solution and the modified magnetic nano sorbent exhibited good reusability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用锌金属卟啉接枝磁性纳米颗粒去除废水中的硫酸盐离子
研究了锌金属卟啉接枝纳米Fe3O4作为新型吸附剂对废水中硫酸盐离子的去除效果。采用3-氨基丙基三乙氧基硅烷和锌(II)卟啉对纳米磁铁矿进行改性,以提高其对硫酸盐离子的去除率。采用傅里叶变换红外光谱(FT-IR)、x射线衍射(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对合成的纳米吸附剂进行表征。考察了pH、接触时间、吸附剂用量以及水溶液中阴离子共存等重要实验因素对吸附效果的影响。在最佳条件下(接触时间:30 min, pH: 6.5,纳米吸附剂用量:100 mg),硫酸盐样品(50 mL, 50 mg -1),硫酸盐离子提取率为94.5%。改性后的磁性纳米吸附剂具有良好的可重复使用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Determine methylene blue based on carbon paste electrode modified with nanoparticles of nickel oxide-nitrogen carbon quantum dots and carbon structures by cyclic voltammetry A review: Exploratory analysis of recent advancement in green analytical chemistry application the Determination and evaluation of trace elements in the blood of radiography workers using graphite furnace atomic absorption spectrometry Chromium desalinization using novel chitosan functionalized iron oxide- biochar composites: Analysis, synthesis, characterization and adsorption performance Solid phase-fabrication of multi-walled carbon nanotubes and their derivatives for efficient extraction and analysis of Bismarck Brown-Y Dye from aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1