First Principle Study of Electronic Property of Doped/Undoped Graphene Structure for Interconnect Application

Vijay Rao Kumbhare, P. Paltani, M. Majumder
{"title":"First Principle Study of Electronic Property of Doped/Undoped Graphene Structure for Interconnect Application","authors":"Vijay Rao Kumbhare, P. Paltani, M. Majumder","doi":"10.1109/NANO51122.2021.9514343","DOIUrl":null,"url":null,"abstract":"Emerging trends in the VLSI industry open a new way to explore the electronic behavior of the novel graphene due to fundamental limitations (physical and geometrical) of silicon CMOS technology. In order to accomplish it, the structural behavior of graphene under the influence of different intercalation doping materials is investigated using spin-polarized density functional theory (DFT) and nonequilibrium Green's function (NEGF). This work considers three different graphene structures such as an armchair, zigzag, and (3, 2) chiral configurations to demonstrate the transmission spectrum for doped and pristine multi-layered graphene nanoribbon (MLGNR). Further, pristine graphene is compared with the different intercalation doped materials such as Lithium (Li), Ferric chloride (FeCl3), Arsenic pentafluoride (AsF5), and Molybdenum pentachloride (MoCl5) to observe the transmission in the central channel region. It is evident that the intercalated Li doping on zigzag MLGNR provides 71.60%, 95.12%, and 88.23% higher transmission in the central channel region compared to pristine zigzag, armchair, and (3, 2) chiral structures, respectively. Therefore, it is observed that intercalation doping is a suitable choice to improve the metallic nature of MLGNR structure that can be a better choice for nanoscale interconnect application.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"1 1","pages":"77-80"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging trends in the VLSI industry open a new way to explore the electronic behavior of the novel graphene due to fundamental limitations (physical and geometrical) of silicon CMOS technology. In order to accomplish it, the structural behavior of graphene under the influence of different intercalation doping materials is investigated using spin-polarized density functional theory (DFT) and nonequilibrium Green's function (NEGF). This work considers three different graphene structures such as an armchair, zigzag, and (3, 2) chiral configurations to demonstrate the transmission spectrum for doped and pristine multi-layered graphene nanoribbon (MLGNR). Further, pristine graphene is compared with the different intercalation doped materials such as Lithium (Li), Ferric chloride (FeCl3), Arsenic pentafluoride (AsF5), and Molybdenum pentachloride (MoCl5) to observe the transmission in the central channel region. It is evident that the intercalated Li doping on zigzag MLGNR provides 71.60%, 95.12%, and 88.23% higher transmission in the central channel region compared to pristine zigzag, armchair, and (3, 2) chiral structures, respectively. Therefore, it is observed that intercalation doping is a suitable choice to improve the metallic nature of MLGNR structure that can be a better choice for nanoscale interconnect application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂/未掺杂石墨烯互连结构电子特性第一性原理研究
由于硅CMOS技术的基本限制(物理和几何),VLSI行业的新兴趋势为探索新型石墨烯的电子行为开辟了新的途径。为此,利用自旋极化密度泛函理论(DFT)和非平衡格林函数(NEGF)研究了石墨烯在不同插层掺杂材料影响下的结构行为。本研究考虑了三种不同的石墨烯结构,如扶手椅结构、之字形结构和(3,2)手性结构,以展示掺杂和原始多层石墨烯纳米带(MLGNR)的透射光谱。此外,将原始石墨烯与不同的插层掺杂材料如锂(Li)、氯化铁(FeCl3)、五氟化砷(AsF5)和五氯化钼(MoCl5)进行比较,观察其在中央通道区域的透射情况。结果表明,与原始之字形、扶手型和(3,2)手性结构相比,在之字形MLGNR上掺杂Li,在中心通道区域的透射率分别提高了71.60%、95.12%和88.23%。因此,可以看出,嵌入掺杂是改善MLGNR结构金属性质的合适选择,可以成为纳米级互连应用的更好选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copper-MWCNT Composite: A Solution to Breakdown in Copper Interconnects Si Nanopillar/SiGe Composite Structure for Thermally Managed Nano-devices Reservoir Computing System using Biomolecular Memristor Electrothermal Parameters of Graphene Nanoplatelets Films High-performance VOx-based memristors with ultralow switching voltages prepared at room temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1