Adaptive Frame Rate Optimization Based on Particle Swarm and Neural Network for Industrial Video Stream

Xiaoling Zhang, Menghao Li, K. Mei, Lu Ding
{"title":"Adaptive Frame Rate Optimization Based on Particle Swarm and Neural Network for Industrial Video Stream","authors":"Xiaoling Zhang, Menghao Li, K. Mei, Lu Ding","doi":"10.1109/ETFA.2019.8869488","DOIUrl":null,"url":null,"abstract":"The emergence of a large number of video data puts forward higher requirements on traditional video transmission technology. The new streaming media technology based on HTTP dynamic adaptive streaming DASH transmission protocol has become an important research direction of video services. How to overcome the unstable characteristics of wireless links in a limited bandwidth, achieve high-quality intelligent transmission of video, and obtain optimal user quality of experience (QoE), has become an urgent problem to be solved. This paper abandons the traditional streaming media adaptive transmission method, and combines neural network and particle swarm optimization algorithm to design a new intelligent transmission scheme. The particle swarm optimization algorithm obtains the optimal transmission parameters of QoE, and the model established by neural network predicts the optimal one. The system sets parameters to ensure video service quality under limited bandwidth and large network fluctuations in the wireless network.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"12 1","pages":"1111-1118"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The emergence of a large number of video data puts forward higher requirements on traditional video transmission technology. The new streaming media technology based on HTTP dynamic adaptive streaming DASH transmission protocol has become an important research direction of video services. How to overcome the unstable characteristics of wireless links in a limited bandwidth, achieve high-quality intelligent transmission of video, and obtain optimal user quality of experience (QoE), has become an urgent problem to be solved. This paper abandons the traditional streaming media adaptive transmission method, and combines neural network and particle swarm optimization algorithm to design a new intelligent transmission scheme. The particle swarm optimization algorithm obtains the optimal transmission parameters of QoE, and the model established by neural network predicts the optimal one. The system sets parameters to ensure video service quality under limited bandwidth and large network fluctuations in the wireless network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群和神经网络的工业视频流自适应帧率优化
大量视频数据的出现对传统的视频传输技术提出了更高的要求。基于HTTP动态自适应流DASH传输协议的新型流媒体技术已成为视频业务的一个重要研究方向。如何克服无线链路在有限带宽下的不稳定特性,实现高质量的视频智能传输,获得最佳的用户体验质量(QoE),已成为亟待解决的问题。本文抛弃了传统的流媒体自适应传输方法,结合神经网络和粒子群优化算法设计了一种新的智能传输方案。粒子群算法得到QoE的最优传输参数,并通过神经网络建立模型预测最优传输参数。在无线网络中,为了保证有限的带宽和较大的网络波动下的视频业务质量,系统对参数进行了设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analysis of energy storage system interaction in a multi objective model predictive control based energy management in DC microgrid Latency-Based 5G RAN Slicing Descriptor to Support Deterministic Industry 4.0 Applications CAP: Context-Aware Programming for Cyber Physical Systems Multiplexing Avionics and additional flows on a QoS-aware AFDX network Ultra-Reliable Low Latency based on Retransmission and Spatial Diversity in Slowly Fading Channels with Co-channel Interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1