{"title":"Enhancement of Hydrogels’ Properties for Biomedical Applications: Latest Achievements","authors":"Ã. Serrano-Aroca","doi":"10.5772/INTECHOPEN.71671","DOIUrl":null,"url":null,"abstract":"Currently, there are many hydrogels used in many important biomedical fields such as therapeutic delivery, contact lenses, corneal prosthesis, bone cements, wound dressing, 3D tissue scaffolds for tissue engineering, etc., due to their excellent biocompatibility and water sorption properties. Many of these hydrophilic polymers have been already approved by the US Food and Drug Administration (FDA) for various applications. However, many of their potential uses required for many biomedical applications often are hindered by their low mechanical strength, antimicrobial and/or antifouling activity, biological interactions, water sorption and diffusion, porosity, electrical and/or thermal properties, among others. Thus, new advanced hydrogels have been developed as mul - ticomponent systems in the form of composite or nanocomposite materials, which are expected to exhibit superior properties to increase the potential uses of these materials in the biomedical industry. Even though the great advances achieved so far, much research has to be conducted still in order to find new strategies to fabricate novel hydrogels able to overcome many of these problems.","PeriodicalId":13011,"journal":{"name":"Hydrogels","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.71671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Currently, there are many hydrogels used in many important biomedical fields such as therapeutic delivery, contact lenses, corneal prosthesis, bone cements, wound dressing, 3D tissue scaffolds for tissue engineering, etc., due to their excellent biocompatibility and water sorption properties. Many of these hydrophilic polymers have been already approved by the US Food and Drug Administration (FDA) for various applications. However, many of their potential uses required for many biomedical applications often are hindered by their low mechanical strength, antimicrobial and/or antifouling activity, biological interactions, water sorption and diffusion, porosity, electrical and/or thermal properties, among others. Thus, new advanced hydrogels have been developed as mul - ticomponent systems in the form of composite or nanocomposite materials, which are expected to exhibit superior properties to increase the potential uses of these materials in the biomedical industry. Even though the great advances achieved so far, much research has to be conducted still in order to find new strategies to fabricate novel hydrogels able to overcome many of these problems.