H. Kameyama, Y. Okuyama, S. Kamohara, K. Kubota, H. Kume, K. Okuyama, Y. Manabe, A. Nozoe, H. Uchida, M. Hidaka, K. Ogura
{"title":"A new data retention mechanism after endurance stress on flash memory","authors":"H. Kameyama, Y. Okuyama, S. Kamohara, K. Kubota, H. Kume, K. Okuyama, Y. Manabe, A. Nozoe, H. Uchida, M. Hidaka, K. Ogura","doi":"10.1109/RELPHY.2000.843914","DOIUrl":null,"url":null,"abstract":"We propose a new data retention model after endurance stress that may be explained as a combination of two retention mechanisms. One inherent retention characteristic is ruled by thermionic emission and is dominant above 150 C. The other retention mechanism is dominant below 85 to 125 C and is controlled by anomalous SILC. We have clarified that the data retention properties after P/E cycling were well fitted by the hopping conduction model. In particular, the presence of traps generated by excessive P/E cycling played a significant role in the temperature dependence of the retention lifetime.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"35 1","pages":"194-199"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
We propose a new data retention model after endurance stress that may be explained as a combination of two retention mechanisms. One inherent retention characteristic is ruled by thermionic emission and is dominant above 150 C. The other retention mechanism is dominant below 85 to 125 C and is controlled by anomalous SILC. We have clarified that the data retention properties after P/E cycling were well fitted by the hopping conduction model. In particular, the presence of traps generated by excessive P/E cycling played a significant role in the temperature dependence of the retention lifetime.