Line loss optimization based OPF strategy by hierarchical control for DC microgrid

Junchao Ma, F. He, Zhengming Zhao
{"title":"Line loss optimization based OPF strategy by hierarchical control for DC microgrid","authors":"Junchao Ma, F. He, Zhengming Zhao","doi":"10.1109/ECCE.2015.7310531","DOIUrl":null,"url":null,"abstract":"DC micro-grids are considered as a friendly way to integrate renewable energy resources as well as distributed energy storage systems. With high penetration of power electronic converters in DC micro-grids, the control strategies of DC micro-grids can be very flexible. However, the line loss is relatively high at the same time. Thus, a proper optimal power flow (OPF) strategy is needed for DC micro-grids to minimize the line loss. Different from OPF for conventional grids, OPF for micro-grids should not require prior knowledge of grid structure and line impedance because power sources and loads may have frequent reconfiguration in grid architecture and the extendibility of the grid needs to be taken highly into consideration. In this paper, a control strategy for OPF in DC micro-grids is proposed. It is based on conventional hierarchical in DC grids with low bandwidth communication. The key point is an improvement in the secondary control strategy. The proposed OPF strategy needs neither knowledge of grid structure nor operating condition. A 400V microgrid simulation model is presented to verify the proposed method.","PeriodicalId":6654,"journal":{"name":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"2018 1","pages":"6212-6216"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2015.7310531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

DC micro-grids are considered as a friendly way to integrate renewable energy resources as well as distributed energy storage systems. With high penetration of power electronic converters in DC micro-grids, the control strategies of DC micro-grids can be very flexible. However, the line loss is relatively high at the same time. Thus, a proper optimal power flow (OPF) strategy is needed for DC micro-grids to minimize the line loss. Different from OPF for conventional grids, OPF for micro-grids should not require prior knowledge of grid structure and line impedance because power sources and loads may have frequent reconfiguration in grid architecture and the extendibility of the grid needs to be taken highly into consideration. In this paper, a control strategy for OPF in DC micro-grids is proposed. It is based on conventional hierarchical in DC grids with low bandwidth communication. The key point is an improvement in the secondary control strategy. The proposed OPF strategy needs neither knowledge of grid structure nor operating condition. A 400V microgrid simulation model is presented to verify the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层控制的直流微电网线损优化OPF策略
直流微电网被认为是集成可再生能源和分布式储能系统的一种友好方式。随着电力电子变换器在直流微电网中的高度普及,直流微电网的控制策略可以非常灵活。但同时线损也比较高。因此,直流微电网需要一个合适的最优潮流(OPF)策略来最小化线路损耗。与传统电网的OPF不同,微电网的OPF不需要预先了解电网结构和线路阻抗,因为电源和负载在电网结构中可能会频繁重构,并且需要高度考虑电网的可扩展性。本文提出了一种直流微电网OPF控制策略。在低带宽通信的直流电网中,它是基于传统的分层结构。关键是对二次控制策略的改进。所提出的OPF策略既不需要了解电网结构,也不需要了解运行状态。通过400V微电网仿真模型验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy comparison between Gompertz and polynomial based PV models Grid synchronization for a virtual direct power-controlled DFIG wind power system Enhancement on capacitor-voltage-balancing capability of a modular multilevel cascade inverter for medium-voltage synchronous-motor drives State observer for sensorless control of a grid-connected converter equipped with an LCL filter: Direct discrete-time design Multi-tap transformer topologies for improved tolerance against misalignment in inductive power transfer systems for electric vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1