{"title":"Development of a Multilayer Iliac Crest Numerical Model for Simulating Honeybee Stinger-Inspired Hollow Needle Insertion","authors":"R. Nadda, R. Repaka, A. Sahani","doi":"10.1115/1.4063054","DOIUrl":null,"url":null,"abstract":"\n Minimally invasive biopsy needles are frequently inserted into the desired body regions while performing the bone marrow biopsy (BMB) procedure. The key problem with needle insertion in tissues is that the insertion force damages the tissue and deviates the needle path, leading the needle to miss the desired target and reducing biopsy sample integrity. To address these shortcomings, the present work developed a unique bioinspired barbed biopsy needle design that reduces insertion/extraction forces and needle deflection. This study established several design parameters, including barb geometry and shape (viz., the height of barb, barbed front angle, barbed back angle, and length of portion containing barbs), and examined the impact of these factors on insertion/extraction force and deflection. A Lagrangian surface-based non-linear finite element (FE) approach has been used to numerically simulate the BMB procedure on a three-dimensional (3D) multilayered heterogeneous model of the human iliac crest. The proposed honeybee stinger-inspired needle design has been found to reduce both insertion and extraction forces because of the decreased frictional surface of the biopsy needle.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Minimally invasive biopsy needles are frequently inserted into the desired body regions while performing the bone marrow biopsy (BMB) procedure. The key problem with needle insertion in tissues is that the insertion force damages the tissue and deviates the needle path, leading the needle to miss the desired target and reducing biopsy sample integrity. To address these shortcomings, the present work developed a unique bioinspired barbed biopsy needle design that reduces insertion/extraction forces and needle deflection. This study established several design parameters, including barb geometry and shape (viz., the height of barb, barbed front angle, barbed back angle, and length of portion containing barbs), and examined the impact of these factors on insertion/extraction force and deflection. A Lagrangian surface-based non-linear finite element (FE) approach has been used to numerically simulate the BMB procedure on a three-dimensional (3D) multilayered heterogeneous model of the human iliac crest. The proposed honeybee stinger-inspired needle design has been found to reduce both insertion and extraction forces because of the decreased frictional surface of the biopsy needle.