Impact of RTN and Variability on RRAM-Based Neural Network

P. Freitas, Z. Chai, W. Zhang, J. F. Zhang, J. Marsland
{"title":"Impact of RTN and Variability on RRAM-Based Neural Network","authors":"P. Freitas, Z. Chai, W. Zhang, J. F. Zhang, J. Marsland","doi":"10.1109/ICSICT49897.2020.9278290","DOIUrl":null,"url":null,"abstract":"Resistive switching memory devices can be categorized into filamentary RRAM or non-filamentary RRAM depending on the switching mechanisms. Both types of RRAM devices have been studied as novel synaptic devices in hardware neural networks. In this work, we analyze the amplitude of Random Telegraph Noise (RTN) and program-induced variabilities in both TaOx/Ta2Os filamentary and TiO2/a-Si (a-VMCO) non-filamentary RRAM devices and evaluate their impact on the pattern recognition accuracy of neural networks. It is revealed that the non-filamentary RRAM has a tighter RTN amplitude distribution than its filamentary counterpart, and also has much lower programed-induced variability, which lead to much smaller impact on the recognition accuracy, making it a promising candidate in synaptic application.","PeriodicalId":6727,"journal":{"name":"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)","volume":"2 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Solid-State & Integrated Circuit Technology (ICSICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSICT49897.2020.9278290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Resistive switching memory devices can be categorized into filamentary RRAM or non-filamentary RRAM depending on the switching mechanisms. Both types of RRAM devices have been studied as novel synaptic devices in hardware neural networks. In this work, we analyze the amplitude of Random Telegraph Noise (RTN) and program-induced variabilities in both TaOx/Ta2Os filamentary and TiO2/a-Si (a-VMCO) non-filamentary RRAM devices and evaluate their impact on the pattern recognition accuracy of neural networks. It is revealed that the non-filamentary RRAM has a tighter RTN amplitude distribution than its filamentary counterpart, and also has much lower programed-induced variability, which lead to much smaller impact on the recognition accuracy, making it a promising candidate in synaptic application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RTN和变异对基于rram的神经网络的影响
根据开关机制的不同,电阻式开关存储器可分为丝状RRAM和非丝状RRAM。这两种类型的RRAM器件已被研究作为硬件神经网络中的新型突触器件。在这项工作中,我们分析了TaOx/ ta2o丝状和TiO2/a-Si (a-VMCO)非丝状RRAM器件中随机电讯噪声(RTN)的振幅和程序诱导的变化,并评估了它们对神经网络模式识别精度的影响。结果表明,非丝状RRAM比丝状RRAM具有更紧密的RTN振幅分布,并且具有更低的程序诱导变异性,这对识别精度的影响要小得多,使其在突触应用中具有很好的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlations between Static Noise Margin and Single-Event-Upset Hardness for SRAM Cells Design and Implementation of a Low-cost AES Coprocessor Based on eSTT-MRAM IP A Novel Ultra-thin-barrier AlGaN/GaN MIS-gated Hybrid Anode Diode Featuring Improved High-temperature Reverse Blocking Characteristic A Novel Self-Aligned Dopant-Segregated Schottky Tunnel-FET with Asymmetry Sidewall Based on Standard CMOS Technology Unijunction Transistor on Silicon-On-Insulator Substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1