{"title":"Electronic band structures of graphene nanomeshes","authors":"R. Sako, N. Hasegawa, Hideaki Tsuchiya, M. Ogawa","doi":"10.1109/SNW.2012.6243363","DOIUrl":null,"url":null,"abstract":"Graphene nanomesh (GNM) is a highly interconnected network of graphene nanoribbons (GNRs) in which the size of nanoholes and the distance between them can be controlled down to the sub-10 nm scale [1]. GNM can open up a band gap in a large sheet of graphene to creat a semiconducting thin film. Actually, it was demonstrated that GNM-based transistors provide driving currents nearly 100 times greater than individual GNR devices, with a comparable on-off current ratio [1]. Furthermore, for practical use, GNM lattices should be much easier to produce and handle than GNRs. Therefore, the GNMs with variable periodicity and neck width are expected to offer a possibility of band gap engineering and graphene electronic applications [2]. In this study, we investigate the electronic band structures of GNMs with various geometric configurations based on a tight-binding approach [3], and examine the roles of the edge formation and neck width on the band gap opening.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Graphene nanomesh (GNM) is a highly interconnected network of graphene nanoribbons (GNRs) in which the size of nanoholes and the distance between them can be controlled down to the sub-10 nm scale [1]. GNM can open up a band gap in a large sheet of graphene to creat a semiconducting thin film. Actually, it was demonstrated that GNM-based transistors provide driving currents nearly 100 times greater than individual GNR devices, with a comparable on-off current ratio [1]. Furthermore, for practical use, GNM lattices should be much easier to produce and handle than GNRs. Therefore, the GNMs with variable periodicity and neck width are expected to offer a possibility of band gap engineering and graphene electronic applications [2]. In this study, we investigate the electronic band structures of GNMs with various geometric configurations based on a tight-binding approach [3], and examine the roles of the edge formation and neck width on the band gap opening.