Structural and optical study of sputtered grown Sb doped ZnO thin film

Ruchi Singh, Gaurav Siddharth, R. Bhardwaj, S. Mukherjee
{"title":"Structural and optical study of sputtered grown Sb doped ZnO thin film","authors":"Ruchi Singh, Gaurav Siddharth, R. Bhardwaj, S. Mukherjee","doi":"10.1109/NANO51122.2021.9514339","DOIUrl":null,"url":null,"abstract":"Sb-ZnO (SZO) thin films were formed on n-Si semiconductor and sapphire by dual ion beam sputtering (DIBS) technique. Structural and optical parameters of SZO sputtered grown film were determined by ellipsometry and field emission scanning electron microscopy (FE-SEM), and I-V analysis of the SZO/n-Si heterojunction device in dark. A smooth film without any grain boundaries is observed in SEM analysis. The bandgap (Eg) of the grown SZO film is obtained and the value of Eg obtained is 3.92 eV. A high refractive index in the range of n=1.85-2.08 is shown by the deposited SZO film in the ultraviolet (UV)-visible region, moreover, it can be seen from the ellipsometry analysis that the fundamental absorption edge is obtained near the UV region. A rectification ratio of ~ 16 times is observed at ±4 V for SZO/n-Si heterojunction. The Study concludes that SZO material has the potential to be used in the application dealing with the UV region of the light spectra.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"25 1","pages":"474-477"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sb-ZnO (SZO) thin films were formed on n-Si semiconductor and sapphire by dual ion beam sputtering (DIBS) technique. Structural and optical parameters of SZO sputtered grown film were determined by ellipsometry and field emission scanning electron microscopy (FE-SEM), and I-V analysis of the SZO/n-Si heterojunction device in dark. A smooth film without any grain boundaries is observed in SEM analysis. The bandgap (Eg) of the grown SZO film is obtained and the value of Eg obtained is 3.92 eV. A high refractive index in the range of n=1.85-2.08 is shown by the deposited SZO film in the ultraviolet (UV)-visible region, moreover, it can be seen from the ellipsometry analysis that the fundamental absorption edge is obtained near the UV region. A rectification ratio of ~ 16 times is observed at ±4 V for SZO/n-Si heterojunction. The Study concludes that SZO material has the potential to be used in the application dealing with the UV region of the light spectra.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溅射生长Sb掺杂ZnO薄膜的结构和光学研究
采用双离子束溅射(DIBS)技术在n-Si半导体和蓝宝石表面制备了Sb-ZnO (SZO)薄膜。采用椭偏仪和场发射扫描电镜(FE-SEM)对SZO/n-Si异质结器件的结构和光学参数进行了测定,并在黑暗中对SZO/n-Si异质结器件进行了I-V分析。扫描电镜观察到无晶界的光滑薄膜。得到了生长的SZO薄膜的带隙(Eg),其值为3.92 eV。沉积的SZO薄膜在紫外可见区具有较高的折射率,在n=1.85 ~ 2.08范围内,并且通过椭偏分析可以看出,在紫外区附近获得了基本吸收边。在±4 V下,SZO/n-Si异质结的整流比可达~ 16倍。研究结果表明,SZO材料在光谱紫外区处理方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copper-MWCNT Composite: A Solution to Breakdown in Copper Interconnects Si Nanopillar/SiGe Composite Structure for Thermally Managed Nano-devices Reservoir Computing System using Biomolecular Memristor Electrothermal Parameters of Graphene Nanoplatelets Films High-performance VOx-based memristors with ultralow switching voltages prepared at room temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1