{"title":"Thermoelastic stress mitigation and weight reduction of functionally graded multilayer nonuniform thickness disc","authors":"A. Eldeeb, Y. Shabana, A. Elsawaf","doi":"10.1177/03093247231165091","DOIUrl":null,"url":null,"abstract":"In this paper, the particle swarm optimization method is used to reduce the weight of a multilayer rotating nonuniform thickness disc along with alleviation of the maximum tangential stress and the maximum tangential stress-jump at the interfaces. The proposed disc is made of functionally graded material and is subjected to both mechanical pressure and thermal loads. It is divided into several layers with each one having its unique volume fraction. These volume fractions are considered the design variables of the optimization problem along with two geometrical parameters related to the disc thickness. The equilibrium equation in polar coordinates are solved using the finite difference method. A punch of optimization results is calculated and discussed. It is concluded that the range of design variables’ variation widens by considering more layers. Finally, there is no potential disc configuration or geometry is found dominant to enhance the design parameters concurrently. Therefore, performing similar optimization analyses is compulsory to obtain an efficient and durable structure.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"18 1","pages":"661 - 671"},"PeriodicalIF":1.4000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231165091","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, the particle swarm optimization method is used to reduce the weight of a multilayer rotating nonuniform thickness disc along with alleviation of the maximum tangential stress and the maximum tangential stress-jump at the interfaces. The proposed disc is made of functionally graded material and is subjected to both mechanical pressure and thermal loads. It is divided into several layers with each one having its unique volume fraction. These volume fractions are considered the design variables of the optimization problem along with two geometrical parameters related to the disc thickness. The equilibrium equation in polar coordinates are solved using the finite difference method. A punch of optimization results is calculated and discussed. It is concluded that the range of design variables’ variation widens by considering more layers. Finally, there is no potential disc configuration or geometry is found dominant to enhance the design parameters concurrently. Therefore, performing similar optimization analyses is compulsory to obtain an efficient and durable structure.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).