Synthesis, Structural Elucidation, and Antibacterial Evaluation of Some New Molecules Derived from Coumarin, 1,3,4-Oxadiazole, and Acetamide

S. Rasool, Aziz‐ur‐Rehman, M. Abbasi, S. Z. Siddiqui, S. A. Shah, S. Hassan, I. Ahmad
{"title":"Synthesis, Structural Elucidation, and Antibacterial Evaluation of Some New Molecules Derived from Coumarin, 1,3,4-Oxadiazole, and Acetamide","authors":"S. Rasool, Aziz‐ur‐Rehman, M. Abbasi, S. Z. Siddiqui, S. A. Shah, S. Hassan, I. Ahmad","doi":"10.1155/2016/8696817","DOIUrl":null,"url":null,"abstract":"Because of the reported biological activities of coumarin, 1,3,4-oxadiazole, and acetamides, some new compounds incorporating these moieties were synthesized and evaluated for their biological potential against Gram-positive and Gram-negative bacteria. In the present work, 4-chlororesorcinol (1) and ethyl acetoacetate (2) were mixed in a strong acidic medium to synthesize 6-chloro-7-hydroxy-4-methyl-2-oxo-2H-chromene (3) which was subjected to the intermolecular cyclization after consecutive three steps to synthesize 5-(6-chloro-4-methyl-2-oxo-2H-chromen-7-yl)oxy]-1,3,4-oxadiazol-2-thiol (6). A series of acetamoyl electrophiles, 8a–o, were synthesized from aralkyl/alkyl/aryl amines, 7a–o, in an aqueous basic medium. The final compounds, 9a–o, were synthesized by the reaction of compounds 6 and 8a–o in DMF/NaH. The synthesized compounds were structurally elucidated by spectral data analysis of IR, 1H-NMR, and EIMS. The most of the synthesized compounds remained moderate to excellent antibacterial agents. The molecules, 9e, 9j, and 9k, were the most efficient ones against all the five bacterial strains taken into account.","PeriodicalId":19688,"journal":{"name":"Organic Chemistry International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2016/8696817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Because of the reported biological activities of coumarin, 1,3,4-oxadiazole, and acetamides, some new compounds incorporating these moieties were synthesized and evaluated for their biological potential against Gram-positive and Gram-negative bacteria. In the present work, 4-chlororesorcinol (1) and ethyl acetoacetate (2) were mixed in a strong acidic medium to synthesize 6-chloro-7-hydroxy-4-methyl-2-oxo-2H-chromene (3) which was subjected to the intermolecular cyclization after consecutive three steps to synthesize 5-(6-chloro-4-methyl-2-oxo-2H-chromen-7-yl)oxy]-1,3,4-oxadiazol-2-thiol (6). A series of acetamoyl electrophiles, 8a–o, were synthesized from aralkyl/alkyl/aryl amines, 7a–o, in an aqueous basic medium. The final compounds, 9a–o, were synthesized by the reaction of compounds 6 and 8a–o in DMF/NaH. The synthesized compounds were structurally elucidated by spectral data analysis of IR, 1H-NMR, and EIMS. The most of the synthesized compounds remained moderate to excellent antibacterial agents. The molecules, 9e, 9j, and 9k, were the most efficient ones against all the five bacterial strains taken into account.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
香豆素、1,3,4-恶二唑和乙酰胺新分子的合成、结构解析及抗菌性能评价
由于香豆素、1,3,4-恶二唑和乙酰胺的生物活性已被报道,一些含有这些基团的新化合物被合成并评估了它们对革兰氏阳性和革兰氏阴性细菌的生物潜力。在目前的工作,4-chlororesorcinol(1)和乙酰乙酸乙酯(2)在强酸性介质混合合成6-chloro-7-hydroxy-4-methyl-2-oxo-2H-chromene(3)受到了分子间的环化后连续三个步骤合成5 - (6-chloro-4-methyl-2-oxo-2H-chromen-7-yl)氧]1,3,4-oxadiazol-2-thiol(6)。一系列acetamoyl亲电试剂,8光学,合成了芳烷基/烷基芳基胺,7光学,水基本的媒介。化合物6和8a-o在DMF/NaH中反应合成最终化合物9a-o。通过IR、1H-NMR和EIMS对合成的化合物进行了结构表征。大多数合成的化合物仍然是中等到优异的抗菌剂。9e、9j和9k分子对所有5种细菌菌株都是最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Antiproliferative Activity of Some Quinoline and Oxadiazole Derivatives Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole Synthesis, Structural Elucidation, and Antibacterial Evaluation of Some New Molecules Derived from Coumarin, 1,3,4-Oxadiazole, and Acetamide Synthesis, Characterization, and Application of Poly(N,N′-dibromo-N-ethylnaphthyl-2,7-disulfonamide) as an Efficient Reagent for the Synthesis of 2-Arylbenzimidazole and 2-Aryl-1-arylmethyl-1H-1,3-benzimidazole Derivatives Insight into the Willgerodt-Kindler Reaction of ω-Haloacetophenone Derivatives: Mechanistic Implication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1