Understanding pediatric long COVID using a tree-based scan statistic approach: an EHR-based cohort study from the RECOVER Program.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2023-04-01 DOI:10.1093/jamiaopen/ooad016
Vitaly Lorman, Suchitra Rao, Ravi Jhaveri, Abigail Case, Asuncion Mejias, Nathan M Pajor, Payal Patel, Deepika Thacker, Seuli Bose-Brill, Jason Block, Patrick C Hanley, Priya Prahalad, Yong Chen, Christopher B Forrest, L Charles Bailey, Grace M Lee, Hanieh Razzaghi
{"title":"Understanding pediatric long COVID using a tree-based scan statistic approach: an EHR-based cohort study from the RECOVER Program.","authors":"Vitaly Lorman,&nbsp;Suchitra Rao,&nbsp;Ravi Jhaveri,&nbsp;Abigail Case,&nbsp;Asuncion Mejias,&nbsp;Nathan M Pajor,&nbsp;Payal Patel,&nbsp;Deepika Thacker,&nbsp;Seuli Bose-Brill,&nbsp;Jason Block,&nbsp;Patrick C Hanley,&nbsp;Priya Prahalad,&nbsp;Yong Chen,&nbsp;Christopher B Forrest,&nbsp;L Charles Bailey,&nbsp;Grace M Lee,&nbsp;Hanieh Razzaghi","doi":"10.1093/jamiaopen/ooad016","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Post-acute sequalae of SARS-CoV-2 infection (PASC) is not well defined in pediatrics given its heterogeneity of presentation and severity in this population. The aim of this study is to use novel methods that rely on data mining approaches rather than clinical experience to detect conditions and symptoms associated with pediatric PASC.</p><p><strong>Materials and methods: </strong>We used a propensity-matched cohort design comparing children identified using the new PASC ICD10CM diagnosis code (U09.9) (<i>N</i> = 1309) to children with (<i>N</i> = 6545) and without (<i>N</i> = 6545) SARS-CoV-2 infection. We used a tree-based scan statistic to identify potential condition clusters co-occurring more frequently in cases than controls.</p><p><strong>Results: </strong>We found significant enrichment among children with PASC in cardiac, respiratory, neurologic, psychological, endocrine, gastrointestinal, and musculoskeletal systems, the most significant related to circulatory and respiratory such as dyspnea, difficulty breathing, and fatigue and malaise.</p><p><strong>Discussion: </strong>Our study addresses methodological limitations of prior studies that rely on prespecified clusters of potential PASC-associated diagnoses driven by clinician experience. Future studies are needed to identify patterns of diagnoses and their associations to derive clinical phenotypes.</p><p><strong>Conclusion: </strong>We identified multiple conditions and body systems associated with pediatric PASC. Because we rely on a data-driven approach, several new or under-reported conditions and symptoms were detected that warrant further investigation.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ce/35/ooad016.PMC10013630.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooad016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 1

Abstract

Objectives: Post-acute sequalae of SARS-CoV-2 infection (PASC) is not well defined in pediatrics given its heterogeneity of presentation and severity in this population. The aim of this study is to use novel methods that rely on data mining approaches rather than clinical experience to detect conditions and symptoms associated with pediatric PASC.

Materials and methods: We used a propensity-matched cohort design comparing children identified using the new PASC ICD10CM diagnosis code (U09.9) (N = 1309) to children with (N = 6545) and without (N = 6545) SARS-CoV-2 infection. We used a tree-based scan statistic to identify potential condition clusters co-occurring more frequently in cases than controls.

Results: We found significant enrichment among children with PASC in cardiac, respiratory, neurologic, psychological, endocrine, gastrointestinal, and musculoskeletal systems, the most significant related to circulatory and respiratory such as dyspnea, difficulty breathing, and fatigue and malaise.

Discussion: Our study addresses methodological limitations of prior studies that rely on prespecified clusters of potential PASC-associated diagnoses driven by clinician experience. Future studies are needed to identify patterns of diagnoses and their associations to derive clinical phenotypes.

Conclusion: We identified multiple conditions and body systems associated with pediatric PASC. Because we rely on a data-driven approach, several new or under-reported conditions and symptoms were detected that warrant further investigation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于树的扫描统计方法了解儿科长COVID:来自RECOVER计划的基于ehr的队列研究。
鉴于SARS-CoV-2感染(PASC)在儿科人群中的表现和严重程度的异质性,其急性后后遗症(PASC)尚未得到很好的定义。本研究的目的是使用依赖于数据挖掘方法而不是临床经验的新方法来检测与儿科PASC相关的条件和症状。材料和方法:我们采用倾向匹配队列设计,比较使用新的PASC ICD10CM诊断代码(U09.9)鉴定的儿童(N = 1309)与感染SARS-CoV-2的儿童(N = 6545)和未感染SARS-CoV-2的儿童(N = 6545)。我们使用基于树的扫描统计来识别病例中比对照组更频繁地共同发生的潜在病症集群。结果:我们发现PASC患儿在心脏、呼吸、神经、心理、内分泌、胃肠和肌肉骨骼系统中有显著的富集,其中最显著的与循环和呼吸系统相关,如呼吸困难、呼吸困难、疲劳和不适。讨论:我们的研究解决了先前研究的方法学局限性,这些研究依赖于由临床医生经验驱动的潜在pasc相关诊断的预先指定集群。未来的研究需要确定诊断模式及其相关性,以获得临床表型。结论:我们确定了与小儿PASC相关的多种疾病和身体系统。由于我们依靠数据驱动的方法,因此发现了一些新的或未报告的病症和症状,值得进一步调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
A landmark federal interagency collaboration to promote data science in health care: Million Veteran Program-Computational Health Analytics for Medical Precision to Improve Outcomes Now. Targetable molecular algorithm and training platform development for the treatment of non-small cell lung cancer. Sex, sexual orientation, and gender identity data collection across electronic health record platforms: a national cross-sectional survey. Assessing the use of unstructured electronic health record data to identify exposure to firearm violence. Developing personas to inform the design of digital interventions for perinatal mental health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1