M. Indri, C. Possieri, Fiorella Sibona, Pangcheng David Cen Cheng, V. D. Hoang
{"title":"Supervised global path planning for mobile robots with obstacle avoidance","authors":"M. Indri, C. Possieri, Fiorella Sibona, Pangcheng David Cen Cheng, V. D. Hoang","doi":"10.1109/ETFA.2019.8868950","DOIUrl":null,"url":null,"abstract":"The presence of mobile agents in the industrial environment is growing, introducing specific safety issues in their path planning. This paper proposes the implementation of a three-level path planning procedure, which allows: (i) the imposition of a set of waypoints, tending to a safe path, generated by a supervisory planner on the basis of a static map of the environment (not necessarily fully updated), (ii) the generation of a global path including such waypoints exploiting a cost-based algorithm, taking into account also the obstacles not included in the static map, but detected at the beginning of the global planning phase, and (iii) the avoidance of dynamic obstacles appearing during the robot motion, thanks to the action of a local planner. The procedure has been experimentally tested to plan the motion of a differential mobile robot.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"62 1","pages":"601-608"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8868950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The presence of mobile agents in the industrial environment is growing, introducing specific safety issues in their path planning. This paper proposes the implementation of a three-level path planning procedure, which allows: (i) the imposition of a set of waypoints, tending to a safe path, generated by a supervisory planner on the basis of a static map of the environment (not necessarily fully updated), (ii) the generation of a global path including such waypoints exploiting a cost-based algorithm, taking into account also the obstacles not included in the static map, but detected at the beginning of the global planning phase, and (iii) the avoidance of dynamic obstacles appearing during the robot motion, thanks to the action of a local planner. The procedure has been experimentally tested to plan the motion of a differential mobile robot.