Reinforced Lewis covalent bond by twinborn nitride heterostructure for lithium-sulfur batteries

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-04 DOI:10.1016/j.jechem.2023.09.030
Yaochen Song , Pengkai Tang , Yanjie Wang , Yi Wang , Linnan Bi , Qi Liang , Liang He , Qingyu Xie , Yiyong Zhang , Peng Dong , Yingjie Zhang , Yao Yao , Jiaxuan Liao , Sizhe Wang
{"title":"Reinforced Lewis covalent bond by twinborn nitride heterostructure for lithium-sulfur batteries","authors":"Yaochen Song ,&nbsp;Pengkai Tang ,&nbsp;Yanjie Wang ,&nbsp;Yi Wang ,&nbsp;Linnan Bi ,&nbsp;Qi Liang ,&nbsp;Liang He ,&nbsp;Qingyu Xie ,&nbsp;Yiyong Zhang ,&nbsp;Peng Dong ,&nbsp;Yingjie Zhang ,&nbsp;Yao Yao ,&nbsp;Jiaxuan Liao ,&nbsp;Sizhe Wang","doi":"10.1016/j.jechem.2023.09.030","DOIUrl":null,"url":null,"abstract":"<div><p>The practical application of lithium-sulfur (Li-S) batteries, as promising next-generation batteries, is hindered by their shuttle effect and the slow redox kinetics. Herein, a tungsten and molybdenum nitride heterostructure functionalized with hollow metal-organic framework-derived carbon (W<sub>2</sub>N/Mo<sub>2</sub>N) was proposed as the sulfur host. The hollow spherical structure provides storage space for sulfur, enhances electrical conductivity, and inhibits volume expansion. The metal atoms in the nitrides bonded with lithium polysulfides (LiPSs) through Lewis covalent bonds, enhancing the high catalytic activity of the nitrides and effectively reducing the energy barrier of LiPSs redox conversion. Moreover, the high intrinsic conductivity of nitrides and the ability of the heterostructure interface to accelerate electron/ion transport improved the Li<sup>+</sup> transmission. By leveraging the combined properties of strong adsorption and high catalytic activity, the sulfur host effectively inhibited the shuttle effect and accelerated the redox kinetics of LiPSs. High-efficiency Li<sup>+</sup> transmission, strong adsorption, and the efficient catalytic conversion activities of LiPSs in the heterostructure were experimentally and theoretically verified. The results indicate that the W<sub>2</sub>N/Mo<sub>2</sub>N cathode provides stable, and long-term cycling (over 2000 cycles) at 3 C with a low attenuation rate of 0.0196% per cycle. The design strategy of a twinborn nitride heterostructure thus provides a functionalized solution for advanced Li-S batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005454","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The practical application of lithium-sulfur (Li-S) batteries, as promising next-generation batteries, is hindered by their shuttle effect and the slow redox kinetics. Herein, a tungsten and molybdenum nitride heterostructure functionalized with hollow metal-organic framework-derived carbon (W2N/Mo2N) was proposed as the sulfur host. The hollow spherical structure provides storage space for sulfur, enhances electrical conductivity, and inhibits volume expansion. The metal atoms in the nitrides bonded with lithium polysulfides (LiPSs) through Lewis covalent bonds, enhancing the high catalytic activity of the nitrides and effectively reducing the energy barrier of LiPSs redox conversion. Moreover, the high intrinsic conductivity of nitrides and the ability of the heterostructure interface to accelerate electron/ion transport improved the Li+ transmission. By leveraging the combined properties of strong adsorption and high catalytic activity, the sulfur host effectively inhibited the shuttle effect and accelerated the redox kinetics of LiPSs. High-efficiency Li+ transmission, strong adsorption, and the efficient catalytic conversion activities of LiPSs in the heterostructure were experimentally and theoretically verified. The results indicate that the W2N/Mo2N cathode provides stable, and long-term cycling (over 2000 cycles) at 3 C with a low attenuation rate of 0.0196% per cycle. The design strategy of a twinborn nitride heterostructure thus provides a functionalized solution for advanced Li-S batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双生氮化物异质结构增强锂硫电池的Lewis共价键
锂硫电池(li -硫电池)作为下一代电池,其穿梭效应和氧化还原动力学缓慢阻碍了锂硫电池的实际应用。本文提出了一种以空心金属-有机骨架衍生碳(W2N/Mo2N)功能化的钨钼氮化异质结构作为硫主体。中空的球形结构为硫提供了存储空间,提高了导电性,抑制了体积膨胀。氮化物中的金属原子通过Lewis共价键与锂多硫化物(LiPSs)结合,增强了氮化物的高催化活性,有效降低了LiPSs氧化还原转化的能垒。此外,氮化物的高本征电导率和异质结构界面加速电子/离子输运的能力提高了Li+的透射率。硫宿主利用强吸附和高催化活性的结合特性,有效抑制了穿梭效应,加速了LiPSs的氧化还原动力学。实验和理论验证了LiPSs在异质结构中Li+的高效传输、强吸附和高效催化转化活性。结果表明,W2N/Mo2N阴极在3℃下提供稳定的长期循环(超过2000次),每循环衰减率为0.0196%。因此,双生氮化物异质结构的设计策略为先进的锂硫电池提供了一种功能化的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode Recent progress of self-supported air electrodes for flexible Zn-air batteries Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1