{"title":"Bioprinting: A Strategy to Build Informative Models of Exposure and Disease","authors":"Jose Caceres-Alban;Midori Sanchez;Fanny L. Casado","doi":"10.1109/RBME.2022.3146293","DOIUrl":null,"url":null,"abstract":"Novel additive manufacturing techniques are revolutionizing fields of industry providing more dimensions to control and the versatility of fabricating multi-material products. Medical applications hold great promise to manufacture constructs of mixed biologically compatible materials together with functional cells and tissues. We reviewed technologies and promising developments nurturing innovation of physiologically relevant models to study safety of chemicals that are hard to reproduce in current models, or diseases for which there are no models available. Extrusion-, inkjet- and laser-assisted bioprinting are the most used techniques. Hydrogels as constituents of bioinks and biomaterial inks are the most versatile materials to recreate physiological and pathophysiological microenvironments. The highlighted bioprinted models were chosen because they guarantee post-printing cellular viability while maintaining desirable mechanical properties of their constitutive bioinks or biomaterial inks to ensure their printability. Bioprinting is being readily adopted to overcome ethical concerns of in vivo models and improve the automation, reproducibility, geometry stability of traditional \n<italic>in vitro</i>\n models. The challenges for advancing the technological level readiness of bioprinting require overcoming heterogeneity, microstructural complexity, dynamism and integration with other models, to generate multi-organ platforms that can inform about biological responses to chemical exposure, disease development and efficacy of novel therapies.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"594-610"},"PeriodicalIF":17.2000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/10007429/09695320.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9695320/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Novel additive manufacturing techniques are revolutionizing fields of industry providing more dimensions to control and the versatility of fabricating multi-material products. Medical applications hold great promise to manufacture constructs of mixed biologically compatible materials together with functional cells and tissues. We reviewed technologies and promising developments nurturing innovation of physiologically relevant models to study safety of chemicals that are hard to reproduce in current models, or diseases for which there are no models available. Extrusion-, inkjet- and laser-assisted bioprinting are the most used techniques. Hydrogels as constituents of bioinks and biomaterial inks are the most versatile materials to recreate physiological and pathophysiological microenvironments. The highlighted bioprinted models were chosen because they guarantee post-printing cellular viability while maintaining desirable mechanical properties of their constitutive bioinks or biomaterial inks to ensure their printability. Bioprinting is being readily adopted to overcome ethical concerns of in vivo models and improve the automation, reproducibility, geometry stability of traditional
in vitro
models. The challenges for advancing the technological level readiness of bioprinting require overcoming heterogeneity, microstructural complexity, dynamism and integration with other models, to generate multi-organ platforms that can inform about biological responses to chemical exposure, disease development and efficacy of novel therapies.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.