{"title":"Foot Pronation Prediction with Inertial Sensors during Running: A Preliminary Application of Data-Driven Approaches.","authors":"Liangliang Xiang, Yaodong Gu, Alan Wang, Vickie Shim, Zixiang Gao, Justin Fernandez","doi":"10.5114/jhk/163059","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal foot postures may affect foot movement and joint loading during locomotion. Investigating foot posture alternation during running could contribute to injury prevention and foot mechanism study. This study aimed to develop feature-based and deep learning algorithms to predict foot pronation during prolonged running. Thirty-two recreational runners have been recruited for this study. Nine-axial inertial sensors were attached to the right dorsum of the foot and the vertical axis of the distal anteromedial tibia. This study employed feature-based machine learning algorithms, including support vector machine (SVM), extreme gradient boosting (XGBoost), random forest, and deep learning, i.e., one-dimensional convolutional neural networks (CNN1D), to predict foot pronation. A custom nested k-fold cross-validation was designed for hyper-parameter tuning and validating the model's performance. The XGBoot classifier achieved the best accuracy using acceleration and angular velocity data from the foot dorsum as input. Accuracy and the area under curve (AUC) were 74.7 ± 5.2% and 0.82 ± 0.07 for the subject-independent model and 98 ± 0.4% and 0.99 ± 0 for the record-wise method. The test accuracy of the CNN1D model with sensor data at the foot dorsum was 74 ± 3.8% for the subject-wise approach with an AUC of 0.8 ± 0.05. This study found that these algorithms, specifically for the CNN1D and XGBoost model with inertial sensor data collected from the foot dorsum, could be implemented into wearable devices, such as a smartwatch, for monitoring a runner's foot pronation during long-distance running. It has the potential for running shoe matching and reducing or preventing foot posture-induced injuries.</p>","PeriodicalId":16055,"journal":{"name":"Journal of Human Kinetics","volume":"87 ","pages":"29-40"},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407326/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Kinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/jhk/163059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Abnormal foot postures may affect foot movement and joint loading during locomotion. Investigating foot posture alternation during running could contribute to injury prevention and foot mechanism study. This study aimed to develop feature-based and deep learning algorithms to predict foot pronation during prolonged running. Thirty-two recreational runners have been recruited for this study. Nine-axial inertial sensors were attached to the right dorsum of the foot and the vertical axis of the distal anteromedial tibia. This study employed feature-based machine learning algorithms, including support vector machine (SVM), extreme gradient boosting (XGBoost), random forest, and deep learning, i.e., one-dimensional convolutional neural networks (CNN1D), to predict foot pronation. A custom nested k-fold cross-validation was designed for hyper-parameter tuning and validating the model's performance. The XGBoot classifier achieved the best accuracy using acceleration and angular velocity data from the foot dorsum as input. Accuracy and the area under curve (AUC) were 74.7 ± 5.2% and 0.82 ± 0.07 for the subject-independent model and 98 ± 0.4% and 0.99 ± 0 for the record-wise method. The test accuracy of the CNN1D model with sensor data at the foot dorsum was 74 ± 3.8% for the subject-wise approach with an AUC of 0.8 ± 0.05. This study found that these algorithms, specifically for the CNN1D and XGBoost model with inertial sensor data collected from the foot dorsum, could be implemented into wearable devices, such as a smartwatch, for monitoring a runner's foot pronation during long-distance running. It has the potential for running shoe matching and reducing or preventing foot posture-induced injuries.
期刊介绍:
The Journal of Human Kinetics is an open access interdisciplinary periodical offering the latest research in the science of human movement studies. This comprehensive professional journal features articles and research notes encompassing such topic areas as: Kinesiology, Exercise Physiology and Nutrition, Sports Training and Behavioural Sciences in Sport, but especially considering elite and competitive aspects of sport.
The journal publishes original papers, invited reviews, short communications and letters to the Editors. Manuscripts submitted to the journal must contain novel data on theoretical or experimental research or on practical applications in the field of sport sciences.
The Journal of Human Kinetics is published in March, June, September and December.
We encourage scientists from around the world to submit their papers to our periodical.