在紫外线损伤的染色质中出现了依赖parp和不依赖nat10的RNA中n4 -胞苷的乙酰化。

IF 4.2 2区 生物学 Q1 GENETICS & HEREDITY Epigenetics & Chromatin Pub Date : 2023-06-15 DOI:10.1186/s13072-023-00501-x
Alena Svobodová Kovaříková, Lenka Stixová, Aleš Kovařík, Eva Bártová
{"title":"在紫外线损伤的染色质中出现了依赖parp和不依赖nat10的RNA中n4 -胞苷的乙酰化。","authors":"Alena Svobodová Kovaříková,&nbsp;Lenka Stixová,&nbsp;Aleš Kovařík,&nbsp;Eva Bártová","doi":"10.1186/s13072-023-00501-x","DOIUrl":null,"url":null,"abstract":"<p><p>RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in terms of RNA stability and mRNA translation but also in DNA repair. Here, we observe a high level of ac4C RNA at DNA lesions in interphase cells and irradiated cells in telophase. Ac4C RNA appears in the damaged genome from 2 to 45 min after microirradiation. However, RNA cytidine acetyltransferase NAT10 did not accumulate to damaged sites, and NAT10 depletion did not affect the pronounced recruitment of ac4C RNA to DNA lesions. This process was not dependent on the G1, S, and G2 cell cycle phases. In addition, we observed that the PARP inhibitor, olaparib, prevents the recruitment of ac4C RNA to damaged chromatin. Our data imply that the acetylation of N4-cytidine, especially in small RNAs, has an important role in mediating DNA damage repair. Ac4C RNA likely causes de-condensation of chromatin in the vicinity of DNA lesions, making it accessible for other DNA repair factors involved in the DNA damage response. Alternatively, RNA modifications, including ac4C, could be direct markers of damaged RNAs.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268562/pdf/","citationCount":"1","resultStr":"{\"title\":\"PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin.\",\"authors\":\"Alena Svobodová Kovaříková,&nbsp;Lenka Stixová,&nbsp;Aleš Kovařík,&nbsp;Eva Bártová\",\"doi\":\"10.1186/s13072-023-00501-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in terms of RNA stability and mRNA translation but also in DNA repair. Here, we observe a high level of ac4C RNA at DNA lesions in interphase cells and irradiated cells in telophase. Ac4C RNA appears in the damaged genome from 2 to 45 min after microirradiation. However, RNA cytidine acetyltransferase NAT10 did not accumulate to damaged sites, and NAT10 depletion did not affect the pronounced recruitment of ac4C RNA to DNA lesions. This process was not dependent on the G1, S, and G2 cell cycle phases. In addition, we observed that the PARP inhibitor, olaparib, prevents the recruitment of ac4C RNA to damaged chromatin. Our data imply that the acetylation of N4-cytidine, especially in small RNAs, has an important role in mediating DNA damage repair. Ac4C RNA likely causes de-condensation of chromatin in the vicinity of DNA lesions, making it accessible for other DNA repair factors involved in the DNA damage response. Alternatively, RNA modifications, including ac4C, could be direct markers of damaged RNAs.</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268562/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-023-00501-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-023-00501-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

摘要

RNA修饰已被发现多年,但其功能尚未完全阐明。例如,乙酰化对RNA中n4 -胞苷(ac4C)的调节作用不仅可以从RNA稳定性和mRNA翻译方面探索,还可以从DNA修复方面探索。在此,我们观察到在间期细胞和晚期辐照细胞的DNA损伤处有高水平的ac4C RNA。微辐照后2 ~ 45分钟,受损基因组中出现Ac4C RNA。然而,RNA胞苷乙酰转移酶NAT10不会积聚到受损部位,并且NAT10的耗尽不会影响ac4C RNA向DNA损伤处的明显募集。该过程不依赖于G1、S和G2细胞周期。此外,我们观察到PARP抑制剂olaparib可以阻止受损染色质上ac4C RNA的募集。我们的数据表明,n4 -胞苷的乙酰化,特别是在小rna中,在介导DNA损伤修复中起着重要作用。Ac4C RNA可能导致DNA损伤附近染色质的脱凝,使参与DNA损伤反应的其他DNA修复因子能够接近。另外,RNA修饰,包括ac4C,可能是受损RNA的直接标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin.

RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in terms of RNA stability and mRNA translation but also in DNA repair. Here, we observe a high level of ac4C RNA at DNA lesions in interphase cells and irradiated cells in telophase. Ac4C RNA appears in the damaged genome from 2 to 45 min after microirradiation. However, RNA cytidine acetyltransferase NAT10 did not accumulate to damaged sites, and NAT10 depletion did not affect the pronounced recruitment of ac4C RNA to DNA lesions. This process was not dependent on the G1, S, and G2 cell cycle phases. In addition, we observed that the PARP inhibitor, olaparib, prevents the recruitment of ac4C RNA to damaged chromatin. Our data imply that the acetylation of N4-cytidine, especially in small RNAs, has an important role in mediating DNA damage repair. Ac4C RNA likely causes de-condensation of chromatin in the vicinity of DNA lesions, making it accessible for other DNA repair factors involved in the DNA damage response. Alternatively, RNA modifications, including ac4C, could be direct markers of damaged RNAs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics & Chromatin
Epigenetics & Chromatin GENETICS & HEREDITY-
CiteScore
7.00
自引率
0.00%
发文量
35
审稿时长
1 months
期刊介绍: Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.
期刊最新文献
Chromatin structure and 3D architecture define the differential functions of PU.1 regulatory elements in blood cell lineages. H3.3K122A results in a neomorphic phenotype in mouse embryonic stem cells. Epigenetic frontiers: miRNAs, long non-coding RNAs and nanomaterials are pioneering to cancer therapy. Methylation patterns at the adjacent CpG sites within enhancers are a part of cell identity. PRKACB is a novel imprinted gene in marsupials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1