{"title":"用于皮肤/透皮应用的新型囊状双体给药系统。","authors":"Vasanti Suvarna, Rashmi Mallya, Kajal Deshmukh, Bhakti Sawant, Tabassum Asif Khan, Abdelwahab Omri","doi":"10.2174/1567201820666230707161206","DOIUrl":null,"url":null,"abstract":"<p><p>The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":" ","pages":"961-977"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Vesicular Bilosomal Delivery Systems for Dermal/Transdermal Applications.\",\"authors\":\"Vasanti Suvarna, Rashmi Mallya, Kajal Deshmukh, Bhakti Sawant, Tabassum Asif Khan, Abdelwahab Omri\",\"doi\":\"10.2174/1567201820666230707161206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.</p>\",\"PeriodicalId\":10842,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"961-977\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567201820666230707161206\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201820666230707161206","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Novel Vesicular Bilosomal Delivery Systems for Dermal/Transdermal Applications.
The application of therapeutically active molecules through the dermal/transdermal route into the skin has evolved as an attractive formulation strategy in comparison to oral delivery systems for the treatment of various disease conditions. However, the delivery of drugs across the skin is limited due to poor permeability. Dermal/transdermal delivery is associated with ease of accessibility, enhanced safety, better patient compliance, and reduced variability in plasma drug concentrations. It has the ability to bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. Vesicular drug delivery systems, including bilosomes, have gained significant interest due to their colloidal nature, improved drug solubility, absorption, and bioavailability with prolonged circulation time for a large number of new drug molecules. Bilosomes are novel lipid vesicular nanocarriers comprising bile salts, such as deoxycholic acid, sodium cholate, deoxycholate, taurocholate, glycocholate or sorbitan tristearate. These bilosomes are associated with high flexibility, deformability, and elasticity attributed to their bile acid component. These carriers are advantageous in terms of improved skin permeation, increased dermal and epidermal drug concentration, and enhanced local action with reduced systemic absorption of the drug, resulting in reduced side effects. The present article provides a comprehensive overview of the biopharmaceutical aspects of dermal/transdermal bilosome delivery systems, their composition, formulation techniques, characterization methods, and applications.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.