使用串行控制的多重数字微流控技术及其在葡萄糖传感中的应用

IF 2.5 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS SLAS Technology Pub Date : 2024-04-01 DOI:10.1016/j.slast.2023.08.005
Xinyu Liu , Jinying Cai , Wenjia Wang , Yujuan Chai
{"title":"使用串行控制的多重数字微流控技术及其在葡萄糖传感中的应用","authors":"Xinyu Liu ,&nbsp;Jinying Cai ,&nbsp;Wenjia Wang ,&nbsp;Yujuan Chai","doi":"10.1016/j.slast.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Digital microfluidics (DMF) has found great applications <em>in vitro</em> diagnostics (IVD). Compared to the microfabrication-based DMF, printed circuit board (PCB)-based DMF is more economical and compatible with existing IVD instruments. Despite that, current PCB-based DMF is oftentimes limited by the available droplets that can be controlled simultaneously, compromising their throughput and applications as point-of-care tools. In this work, a platform that simultaneously controls multiple PCB-based DMF plates was constructed. The software and hardware were first developed, followed by the reliability tests. Colorimetric analysis of glucose was applied to the PCB-based DMF, demonstrating the capability of this platform. With the high throughput enabled by simultaneous operations of multiple plates, this PCB-based DMF can potentially allow point-of-care testing with low cost for resource-limited settings.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630323000560/pdfft?md5=d6b6b7c473628f52c77f27be8fbac36e&pid=1-s2.0-S2472630323000560-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiplex digital microfluidics using serial controls and its applications in glucose sensing\",\"authors\":\"Xinyu Liu ,&nbsp;Jinying Cai ,&nbsp;Wenjia Wang ,&nbsp;Yujuan Chai\",\"doi\":\"10.1016/j.slast.2023.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Digital microfluidics (DMF) has found great applications <em>in vitro</em> diagnostics (IVD). Compared to the microfabrication-based DMF, printed circuit board (PCB)-based DMF is more economical and compatible with existing IVD instruments. Despite that, current PCB-based DMF is oftentimes limited by the available droplets that can be controlled simultaneously, compromising their throughput and applications as point-of-care tools. In this work, a platform that simultaneously controls multiple PCB-based DMF plates was constructed. The software and hardware were first developed, followed by the reliability tests. Colorimetric analysis of glucose was applied to the PCB-based DMF, demonstrating the capability of this platform. With the high throughput enabled by simultaneous operations of multiple plates, this PCB-based DMF can potentially allow point-of-care testing with low cost for resource-limited settings.</p></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2472630323000560/pdfft?md5=d6b6b7c473628f52c77f27be8fbac36e&pid=1-s2.0-S2472630323000560-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630323000560\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630323000560","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

数字微流体技术(DMF)在体外诊断(IVD)中得到了广泛应用。与基于微加工的 DMF 相比,基于印刷电路板 (PCB) 的 DMF 更为经济,而且与现有的 IVD 仪器兼容。尽管如此,目前基于印刷电路板的 DMF 常常受到可同时控制的液滴数量的限制,影响了其吞吐量和作为护理点工具的应用。在这项工作中,我们构建了一个可同时控制多个基于 PCB 的 DMF 板的平台。首先开发了软件和硬件,然后进行了可靠性测试。对基于 PCB 的 DMF 进行了葡萄糖比色分析,证明了该平台的能力。这种基于印刷电路板的 DMF 通过同时操作多个平板实现了高通量,有可能为资源有限的环境提供低成本的护理点检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiplex digital microfluidics using serial controls and its applications in glucose sensing

Digital microfluidics (DMF) has found great applications in vitro diagnostics (IVD). Compared to the microfabrication-based DMF, printed circuit board (PCB)-based DMF is more economical and compatible with existing IVD instruments. Despite that, current PCB-based DMF is oftentimes limited by the available droplets that can be controlled simultaneously, compromising their throughput and applications as point-of-care tools. In this work, a platform that simultaneously controls multiple PCB-based DMF plates was constructed. The software and hardware were first developed, followed by the reliability tests. Colorimetric analysis of glucose was applied to the PCB-based DMF, demonstrating the capability of this platform. With the high throughput enabled by simultaneous operations of multiple plates, this PCB-based DMF can potentially allow point-of-care testing with low cost for resource-limited settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SLAS Technology
SLAS Technology Computer Science-Computer Science Applications
CiteScore
6.30
自引率
7.40%
发文量
47
审稿时长
106 days
期刊介绍: SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.
期刊最新文献
Breast cancer promotes the expression of neurotransmitter receptor related gene groups and image simulation of prognosis model Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment Simulation of predicting atrial fibrosis in patients with paroxysmal atrial fibrillation during sinus node recovery time in optical imaging Diagnosis of acute hyperglycemia based on data-driven prediction models Feasibility and safety study of advanced prostate biopsy robot system based on MR-TRUS Image flexible fusion technology in animal experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1