发现针对恶性疟原虫DHODH和PMT的双靶点天然抗疟剂:药效团建模、分子对接、量子力学和分子动力学模拟。

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY SAR and QSAR in Environmental Research Pub Date : 2023-07-01 Epub Date: 2023-09-04 DOI:10.1080/1062936X.2023.2251876
E M Elamin, S E Eshage, S M Mohmmode, R M Mukhtar, M Mahjoub, E Sadelin, T H Shoaib, A Edris, E M Elshamly, A A Makki, A Ashour, A E Sherif, W Osman, S R M Ibrahim, G A Mohamed, A A Alzain
{"title":"发现针对恶性疟原虫DHODH和PMT的双靶点天然抗疟剂:药效团建模、分子对接、量子力学和分子动力学模拟。","authors":"E M Elamin,&nbsp;S E Eshage,&nbsp;S M Mohmmode,&nbsp;R M Mukhtar,&nbsp;M Mahjoub,&nbsp;E Sadelin,&nbsp;T H Shoaib,&nbsp;A Edris,&nbsp;E M Elshamly,&nbsp;A A Makki,&nbsp;A Ashour,&nbsp;A E Sherif,&nbsp;W Osman,&nbsp;S R M Ibrahim,&nbsp;G A Mohamed,&nbsp;A A Alzain","doi":"10.1080/1062936X.2023.2251876","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria is a lethal disease that claims thousands of lives worldwide annually. The objective of this study was to identify new natural compounds that can target two <i>P. falciparum</i> enzymes; <i>P. falciparu</i>m Dihydroorotate dehydrogenase (<i>Pf</i>DHODH) and <i>P. falciparum</i> phosphoethanolamine methyltransferase (<i>Pf</i>PMT). To accomplish this, e-pharmacophore modelling and molecular docking were employed against <i>Pf</i>DHODH. Following this, 1201 natural compounds with docking scores of ≤ -7 kcal/mol were docked into the active site of the second enzyme PMT. The top nine compounds were subjected to further investigation using MM-GBSA free binding energy calculations and ADME analysis. The results revealed favourable free binding energy values better than the references, as well as acceptable pharmacokinetic properties. Compounds ZINC000013377887, ZINC000015113777, and ZINC000085595753 were scrutinized to assess their interaction stability with the <i>Pf</i>DHODH enzyme, and chemical stability reactivity using molecular dynamics (MD) simulation and density functional theory (DFT) calculations. These findings indicate that the three natural compounds are potential candidates for dual <i>Pf</i>DHODH and <i>Pf</i>PMT inhibitors for malaria treatment.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 9","pages":"709-728"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of dual-target natural antimalarial agents against DHODH and PMT of <i>Plasmodium falciparum</i>: pharmacophore modelling, molecular docking, quantum mechanics, and molecular dynamics simulations.\",\"authors\":\"E M Elamin,&nbsp;S E Eshage,&nbsp;S M Mohmmode,&nbsp;R M Mukhtar,&nbsp;M Mahjoub,&nbsp;E Sadelin,&nbsp;T H Shoaib,&nbsp;A Edris,&nbsp;E M Elshamly,&nbsp;A A Makki,&nbsp;A Ashour,&nbsp;A E Sherif,&nbsp;W Osman,&nbsp;S R M Ibrahim,&nbsp;G A Mohamed,&nbsp;A A Alzain\",\"doi\":\"10.1080/1062936X.2023.2251876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malaria is a lethal disease that claims thousands of lives worldwide annually. The objective of this study was to identify new natural compounds that can target two <i>P. falciparum</i> enzymes; <i>P. falciparu</i>m Dihydroorotate dehydrogenase (<i>Pf</i>DHODH) and <i>P. falciparum</i> phosphoethanolamine methyltransferase (<i>Pf</i>PMT). To accomplish this, e-pharmacophore modelling and molecular docking were employed against <i>Pf</i>DHODH. Following this, 1201 natural compounds with docking scores of ≤ -7 kcal/mol were docked into the active site of the second enzyme PMT. The top nine compounds were subjected to further investigation using MM-GBSA free binding energy calculations and ADME analysis. The results revealed favourable free binding energy values better than the references, as well as acceptable pharmacokinetic properties. Compounds ZINC000013377887, ZINC000015113777, and ZINC000085595753 were scrutinized to assess their interaction stability with the <i>Pf</i>DHODH enzyme, and chemical stability reactivity using molecular dynamics (MD) simulation and density functional theory (DFT) calculations. These findings indicate that the three natural compounds are potential candidates for dual <i>Pf</i>DHODH and <i>Pf</i>PMT inhibitors for malaria treatment.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"34 9\",\"pages\":\"709-728\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2023.2251876\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2251876","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

疟疾是一种致命的疾病,每年夺走全世界数千人的生命。本研究的目的是鉴定能够靶向两种恶性疟原虫酶的新的天然化合物;恶性疟原虫二氢乳清酸脱氢酶(PfDHODH)和恶性疟原虫磷酸乙醇胺甲基转移酶(PfPMT)。为了实现这一点,针对PfDHODH采用了电子载体建模和分子对接。随后,将1201种对接得分≤-7 kcal/mol的天然化合物对接到第二种酶PMT的活性位点中。使用MM-GBSA自由结合能计算和ADME分析对前九种化合物进行进一步研究。结果显示了比参考文献更好的有利的自由结合能值,以及可接受的药代动力学特性。使用分子动力学(MD)模拟和密度泛函理论(DFT)计算,仔细研究化合物ZINC000013377887、ZINC000015113777和ZINC000085595753,以评估它们与PfDHODH酶的相互作用稳定性和化学稳定性反应性。这些发现表明,这三种天然化合物是治疗疟疾的双PfDHODH和PfPMT抑制剂的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of dual-target natural antimalarial agents against DHODH and PMT of Plasmodium falciparum: pharmacophore modelling, molecular docking, quantum mechanics, and molecular dynamics simulations.

Malaria is a lethal disease that claims thousands of lives worldwide annually. The objective of this study was to identify new natural compounds that can target two P. falciparum enzymes; P. falciparum Dihydroorotate dehydrogenase (PfDHODH) and P. falciparum phosphoethanolamine methyltransferase (PfPMT). To accomplish this, e-pharmacophore modelling and molecular docking were employed against PfDHODH. Following this, 1201 natural compounds with docking scores of ≤ -7 kcal/mol were docked into the active site of the second enzyme PMT. The top nine compounds were subjected to further investigation using MM-GBSA free binding energy calculations and ADME analysis. The results revealed favourable free binding energy values better than the references, as well as acceptable pharmacokinetic properties. Compounds ZINC000013377887, ZINC000015113777, and ZINC000085595753 were scrutinized to assess their interaction stability with the PfDHODH enzyme, and chemical stability reactivity using molecular dynamics (MD) simulation and density functional theory (DFT) calculations. These findings indicate that the three natural compounds are potential candidates for dual PfDHODH and PfPMT inhibitors for malaria treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
期刊最新文献
Enhanced in silico QSAR-based screening of butyrylcholinesterase inhibitors using multi-feature selection and machine learning. Targeting human arginyltransferase and post-translational protein arginylation: a pharmacophore-based multilayer screening and molecular dynamics approach to discover novel inhibitors with therapeutic promise. Application of monomer structures and fragments of local symmetry for simulation of glass transition temperatures of polymers. First report on q-RASTR modelling of hazardous dose (HD5) for acute toxicity of pesticides: an efficient and reliable approach towards safeguarding the sensitive avian species. Molecular mechanism of interactions of SPIN1 with novel inhibitors through molecular docking and molecular dynamics simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1