{"title":"了解ACE2在严重急性呼吸系统综合征冠状病毒2型感染中的关键作用:从结构/功能到治疗意义。","authors":"Amir Pouremamali, Abouzar Babaei, Somayeh Shatizadeh Malekshahi, Ardeshir Abbasi, Nastaran Rafiee","doi":"10.1186/s43042-022-00314-9","DOIUrl":null,"url":null,"abstract":"<p><p>In December 2019, a novel respiratory tract infection, from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in China that rapidly spread around the world. This virus possesses spike (S) glycoproteins on the surface of mature virions, like other members of coronaviridae. The S glycoprotein is a crucial viral protein for binding, fusion, and entry into the target cells. Binding the receptor-binding domain (RBD) of S protein to angiotensin-converting enzyme 2 (ACE 2), a cell-surface receptor, mediates virus entry into cells; thus, understanding the basics of ACE2 and S protein, their interactions, and ACE2 targeting could be a potent priority for inhibition of virus infection. This review presents current knowledge of the SARS-CoV-2 basics and entry mechanism, structure and organ distribution of ACE2, and also its function in SARS-CoV-2 entry and pathogenesis. Furthermore, it highlights ACE2 targeting by recombinant ACE2 (rACE2), ACE2 activators, ACE inhibitor, and angiotensin II (Ang II) receptor blocker to control the SARS-CoV-2 infection.</p>","PeriodicalId":74994,"journal":{"name":"The Egyptian journal of medical human genetics","volume":"23 1","pages":"103"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206724/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding the pivotal roles of ACE2 in SARS-CoV-2 infection: from structure/function to therapeutic implication.\",\"authors\":\"Amir Pouremamali, Abouzar Babaei, Somayeh Shatizadeh Malekshahi, Ardeshir Abbasi, Nastaran Rafiee\",\"doi\":\"10.1186/s43042-022-00314-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In December 2019, a novel respiratory tract infection, from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in China that rapidly spread around the world. This virus possesses spike (S) glycoproteins on the surface of mature virions, like other members of coronaviridae. The S glycoprotein is a crucial viral protein for binding, fusion, and entry into the target cells. Binding the receptor-binding domain (RBD) of S protein to angiotensin-converting enzyme 2 (ACE 2), a cell-surface receptor, mediates virus entry into cells; thus, understanding the basics of ACE2 and S protein, their interactions, and ACE2 targeting could be a potent priority for inhibition of virus infection. This review presents current knowledge of the SARS-CoV-2 basics and entry mechanism, structure and organ distribution of ACE2, and also its function in SARS-CoV-2 entry and pathogenesis. Furthermore, it highlights ACE2 targeting by recombinant ACE2 (rACE2), ACE2 activators, ACE inhibitor, and angiotensin II (Ang II) receptor blocker to control the SARS-CoV-2 infection.</p>\",\"PeriodicalId\":74994,\"journal\":{\"name\":\"The Egyptian journal of medical human genetics\",\"volume\":\"23 1\",\"pages\":\"103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206724/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Egyptian journal of medical human genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43042-022-00314-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Egyptian journal of medical human genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43042-022-00314-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the pivotal roles of ACE2 in SARS-CoV-2 infection: from structure/function to therapeutic implication.
In December 2019, a novel respiratory tract infection, from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in China that rapidly spread around the world. This virus possesses spike (S) glycoproteins on the surface of mature virions, like other members of coronaviridae. The S glycoprotein is a crucial viral protein for binding, fusion, and entry into the target cells. Binding the receptor-binding domain (RBD) of S protein to angiotensin-converting enzyme 2 (ACE 2), a cell-surface receptor, mediates virus entry into cells; thus, understanding the basics of ACE2 and S protein, their interactions, and ACE2 targeting could be a potent priority for inhibition of virus infection. This review presents current knowledge of the SARS-CoV-2 basics and entry mechanism, structure and organ distribution of ACE2, and also its function in SARS-CoV-2 entry and pathogenesis. Furthermore, it highlights ACE2 targeting by recombinant ACE2 (rACE2), ACE2 activators, ACE inhibitor, and angiotensin II (Ang II) receptor blocker to control the SARS-CoV-2 infection.