Martina Gobec, Aleš Obreza, Marko Jukič, Ana Baumgartner, Nja Mihelčič, Špela Potočnik, Julija Virant, Irena Mlinarič, Raščan Stanislav, Gobec Izidor Sosič
{"title":"基于氨基取代n -芳基胡椒啶基(免疫)蛋白酶体抑制剂的设计与合成。","authors":"Martina Gobec, Aleš Obreza, Marko Jukič, Ana Baumgartner, Nja Mihelčič, Špela Potočnik, Julija Virant, Irena Mlinarič, Raščan Stanislav, Gobec Izidor Sosič","doi":"10.2478/acph-2023-0032","DOIUrl":null,"url":null,"abstract":"<p><p>The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted <i>N</i>-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.</p>","PeriodicalId":7034,"journal":{"name":"Acta Pharmaceutica","volume":"73 3","pages":"441-456"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and synthesis of amino-substituted <i>N</i>-arylpiperidinyl-based inhibitors of the (immuno)proteasome.\",\"authors\":\"Martina Gobec, Aleš Obreza, Marko Jukič, Ana Baumgartner, Nja Mihelčič, Špela Potočnik, Julija Virant, Irena Mlinarič, Raščan Stanislav, Gobec Izidor Sosič\",\"doi\":\"10.2478/acph-2023-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted <i>N</i>-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.</p>\",\"PeriodicalId\":7034,\"journal\":{\"name\":\"Acta Pharmaceutica\",\"volume\":\"73 3\",\"pages\":\"441-456\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2478/acph-2023-0032\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/acph-2023-0032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Design and synthesis of amino-substituted N-arylpiperidinyl-based inhibitors of the (immuno)proteasome.
The constitutive proteasome and the immunoproteasome represent validated targets for pharmacological intervention in the context of various diseases, such as cancer, inflammation, and autoimmune diseases. The development of novel chemical scaffolds of non-peptidic nature, capable of inhibiting different catalytically active subunits of both isoforms, is a viable approach against these diseases. Such compounds are also useful as leads for the development of biochemical probes that enable the studies of the roles of both isoforms in various biological contexts. Here, we present a ligand-based computational design of (immuno)proteasome inhibitors, which resulted in the amino-substituted N-arylpiperidine-based compounds that can inhibit different subunits of the (immuno)proteasome in the low micromolar range. The compounds represent a useful starting point for further structure-activity relationship studies that will, hopefully, lead to non-peptidic compounds that could be used in pharmacological and biochemical studies of both proteasomes.
期刊介绍:
AP is an international, multidisciplinary journal devoted to pharmaceutical and allied sciences and contains articles predominantly on core biomedical and health subjects. The aim of AP is to increase the impact of pharmaceutical research in academia, industry and laboratories. With strong emphasis on quality and originality, AP publishes reports from the discovery of a drug up to clinical practice. Topics covered are: analytics, biochemistry, biopharmaceutics, biotechnology, cell biology, cell cultures, clinical pharmacy, drug design, drug delivery, drug disposition, drug stability, gene technology, medicine (including diagnostics and therapy), medicinal chemistry, metabolism, molecular modeling, pharmacology (clinical and animal), peptide and protein chemistry, pharmacognosy, pharmacoepidemiology, pharmacoeconomics, pharmacodynamics and pharmacokinetics, protein design, radiopharmaceuticals, and toxicology.