Navneeta Bansal, Manoj Kumar, S N Sankhwar, Ashish Gupta
{"title":"前列腺癌组织代谢组学的评估:临床会将其用于诊断吗?","authors":"Navneeta Bansal, Manoj Kumar, S N Sankhwar, Ashish Gupta","doi":"10.1017/erm.2023.22","DOIUrl":null,"url":null,"abstract":"<p><p>The difficulty of diagnosing prostate cancer (PC) with the available biomarkers frequently leads to over-diagnosis and overtreatment of PC, underscoring the need for novel molecular signatures. The purpose of this review is to provide a summary of the currently available cellular metabolomics for PC molecular signatures. A comprehensive search on PubMed was conducted to find studies published between January 2004 and August 2022 that reported biomarkers for PC detection, development, aggressiveness, recurrence and treatment response. Although potential studies have reported the presence of distinguishing molecules that can distinguish between benign and cancerous prostate tissue. However, there are few studies looking into signature molecules linked to disease development, therapy response or tumour recurrence. The majority of these studies use high-dimensional datasets, and the number of potential metabolites investigated frequently exceeds the size of the available samples. In light of this, pre-analytical, statistical, methodological and confounding factors such as antiandrogen therapy (NAT) may also be linked to the identified chemometric multivariate differences between PC and relevant control samples in the datasets. Despite the methodological and procedural challenges, a range of methodological groups and processes have consistently identified a number of signature metabolites and pathways that appear to imply a substantial involvement in the cellular metabolomics of PC for tumour formation and recurrence.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"25 ","pages":"e26"},"PeriodicalIF":4.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of prostate cancer tissue metabolomics: would clinics utilise it for diagnosis?\",\"authors\":\"Navneeta Bansal, Manoj Kumar, S N Sankhwar, Ashish Gupta\",\"doi\":\"10.1017/erm.2023.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The difficulty of diagnosing prostate cancer (PC) with the available biomarkers frequently leads to over-diagnosis and overtreatment of PC, underscoring the need for novel molecular signatures. The purpose of this review is to provide a summary of the currently available cellular metabolomics for PC molecular signatures. A comprehensive search on PubMed was conducted to find studies published between January 2004 and August 2022 that reported biomarkers for PC detection, development, aggressiveness, recurrence and treatment response. Although potential studies have reported the presence of distinguishing molecules that can distinguish between benign and cancerous prostate tissue. However, there are few studies looking into signature molecules linked to disease development, therapy response or tumour recurrence. The majority of these studies use high-dimensional datasets, and the number of potential metabolites investigated frequently exceeds the size of the available samples. In light of this, pre-analytical, statistical, methodological and confounding factors such as antiandrogen therapy (NAT) may also be linked to the identified chemometric multivariate differences between PC and relevant control samples in the datasets. Despite the methodological and procedural challenges, a range of methodological groups and processes have consistently identified a number of signature metabolites and pathways that appear to imply a substantial involvement in the cellular metabolomics of PC for tumour formation and recurrence.</p>\",\"PeriodicalId\":50462,\"journal\":{\"name\":\"Expert Reviews in Molecular Medicine\",\"volume\":\"25 \",\"pages\":\"e26\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Reviews in Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/erm.2023.22\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Reviews in Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/erm.2023.22","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of prostate cancer tissue metabolomics: would clinics utilise it for diagnosis?
The difficulty of diagnosing prostate cancer (PC) with the available biomarkers frequently leads to over-diagnosis and overtreatment of PC, underscoring the need for novel molecular signatures. The purpose of this review is to provide a summary of the currently available cellular metabolomics for PC molecular signatures. A comprehensive search on PubMed was conducted to find studies published between January 2004 and August 2022 that reported biomarkers for PC detection, development, aggressiveness, recurrence and treatment response. Although potential studies have reported the presence of distinguishing molecules that can distinguish between benign and cancerous prostate tissue. However, there are few studies looking into signature molecules linked to disease development, therapy response or tumour recurrence. The majority of these studies use high-dimensional datasets, and the number of potential metabolites investigated frequently exceeds the size of the available samples. In light of this, pre-analytical, statistical, methodological and confounding factors such as antiandrogen therapy (NAT) may also be linked to the identified chemometric multivariate differences between PC and relevant control samples in the datasets. Despite the methodological and procedural challenges, a range of methodological groups and processes have consistently identified a number of signature metabolites and pathways that appear to imply a substantial involvement in the cellular metabolomics of PC for tumour formation and recurrence.
期刊介绍:
Expert Reviews in Molecular Medicine is an innovative online journal featuring authoritative and timely Reviews covering gene therapy, immunotherapeutics, drug design, vaccines, genetic testing, pathogenesis, microbiology, genomics, molecular epidemiology and diagnostic techniques. We especially welcome reviews on translational aspects of molecular medicine, particularly those related to the application of new understanding of the molecular basis of disease to experimental medicine and clinical practice.