A Valeriano, F Bondaug, I Ebardo, P Almonte, M A Sabugaa, J R Bagnol, M J Latayada, J M Macalalag, B D Paradero, M Mayes, M Balanay, A Alguno, R Capangpangan
{"title":"使用正则回归模型预测工程纳米颗粒的细胞毒性:一种计算机方法。","authors":"A Valeriano, F Bondaug, I Ebardo, P Almonte, M A Sabugaa, J R Bagnol, M J Latayada, J M Macalalag, B D Paradero, M Mayes, M Balanay, A Alguno, R Capangpangan","doi":"10.1080/1062936X.2023.2242785","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread application of engineered nanoparticles (NPs) in various industries has demonstrated their effectiveness over the years. However, modifications to NPs' physicochemical properties can lead to toxicological effects. Therefore, understanding the toxicity behaviour of NPs is crucial. In this paper, regularized regression models, such as ridge, LASSO, and elastic net, were constructed to predict the cytotoxicity of various engineered NPs. The dataset utilized in this study was compiled from several journals published between 2010 and 2022. Data exploration revealed missing values, which were addressed through listwise deletion and kNN imputation, resulting in two complete datasets. The ridge, LASSO, and elastic net models achieved F1 scores ranging from 91.81% to 92.65% during internal validation and 92.89% to 93.63% during external validation on Dataset 1. On Dataset 2, the models attained F1 scores between 92.16% and 92.43% during internal validation and 92% and 92.6% during external validation. These results indicate that the developed models effectively generalize to unseen data and demonstrate high accuracy in classifying cytotoxicity levels. Furthermore, the cell type, material, cell source, cell tissue, synthesis method, and coat or functional group were identified as the most important descriptors by the three models across both datasets.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"34 7","pages":"591-604"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting cytotoxicity of engineered nanoparticles using regularized regression models: an in silico approach.\",\"authors\":\"A Valeriano, F Bondaug, I Ebardo, P Almonte, M A Sabugaa, J R Bagnol, M J Latayada, J M Macalalag, B D Paradero, M Mayes, M Balanay, A Alguno, R Capangpangan\",\"doi\":\"10.1080/1062936X.2023.2242785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread application of engineered nanoparticles (NPs) in various industries has demonstrated their effectiveness over the years. However, modifications to NPs' physicochemical properties can lead to toxicological effects. Therefore, understanding the toxicity behaviour of NPs is crucial. In this paper, regularized regression models, such as ridge, LASSO, and elastic net, were constructed to predict the cytotoxicity of various engineered NPs. The dataset utilized in this study was compiled from several journals published between 2010 and 2022. Data exploration revealed missing values, which were addressed through listwise deletion and kNN imputation, resulting in two complete datasets. The ridge, LASSO, and elastic net models achieved F1 scores ranging from 91.81% to 92.65% during internal validation and 92.89% to 93.63% during external validation on Dataset 1. On Dataset 2, the models attained F1 scores between 92.16% and 92.43% during internal validation and 92% and 92.6% during external validation. These results indicate that the developed models effectively generalize to unseen data and demonstrate high accuracy in classifying cytotoxicity levels. Furthermore, the cell type, material, cell source, cell tissue, synthesis method, and coat or functional group were identified as the most important descriptors by the three models across both datasets.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"34 7\",\"pages\":\"591-604\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2023.2242785\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2023.2242785","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Predicting cytotoxicity of engineered nanoparticles using regularized regression models: an in silico approach.
The widespread application of engineered nanoparticles (NPs) in various industries has demonstrated their effectiveness over the years. However, modifications to NPs' physicochemical properties can lead to toxicological effects. Therefore, understanding the toxicity behaviour of NPs is crucial. In this paper, regularized regression models, such as ridge, LASSO, and elastic net, were constructed to predict the cytotoxicity of various engineered NPs. The dataset utilized in this study was compiled from several journals published between 2010 and 2022. Data exploration revealed missing values, which were addressed through listwise deletion and kNN imputation, resulting in two complete datasets. The ridge, LASSO, and elastic net models achieved F1 scores ranging from 91.81% to 92.65% during internal validation and 92.89% to 93.63% during external validation on Dataset 1. On Dataset 2, the models attained F1 scores between 92.16% and 92.43% during internal validation and 92% and 92.6% during external validation. These results indicate that the developed models effectively generalize to unseen data and demonstrate high accuracy in classifying cytotoxicity levels. Furthermore, the cell type, material, cell source, cell tissue, synthesis method, and coat or functional group were identified as the most important descriptors by the three models across both datasets.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.